A recursive filter approach to adaptive Bayesian beamforming for unknown DOA

C. Lam, A. Singer
{"title":"A recursive filter approach to adaptive Bayesian beamforming for unknown DOA","authors":"C. Lam, A. Singer","doi":"10.1109/SAM.2008.4606878","DOIUrl":null,"url":null,"abstract":"Traditional beamforming algorithms require perfect knowledge of the source direction-of-arrival (DOA) to generate beamformer weights that yield high signal-to-interference-plus-noise ratio (SINR). We apply a Bayesian approach to adaptive beamforming such that the algorithm automatically tunes to the underlying DOA that is not known a priori to the user. The proposed beamformer can be viewed as a weighted mixture of minimum variance distortionless response (MVDR) beamformers combined according to the data-driven posterior probability density function (PDF) of the DOA. Previous studies use discrete samples to capture the spatial variation of the posterior PDF. In this work, we show that, in case of uniform linear array (ULA), the posterior PDF can be represented as a product of the prior PDF and a number of von Mises PDFpsilas, each approximated by the frequency response of a recursive filter. The beamformer weights can then be computed from the corresponding recursive filtering operations. This leads to an algorithm that preserves the continuity of the parameter space and is capable to resolve any amount of DOA error.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Traditional beamforming algorithms require perfect knowledge of the source direction-of-arrival (DOA) to generate beamformer weights that yield high signal-to-interference-plus-noise ratio (SINR). We apply a Bayesian approach to adaptive beamforming such that the algorithm automatically tunes to the underlying DOA that is not known a priori to the user. The proposed beamformer can be viewed as a weighted mixture of minimum variance distortionless response (MVDR) beamformers combined according to the data-driven posterior probability density function (PDF) of the DOA. Previous studies use discrete samples to capture the spatial variation of the posterior PDF. In this work, we show that, in case of uniform linear array (ULA), the posterior PDF can be represented as a product of the prior PDF and a number of von Mises PDFpsilas, each approximated by the frequency response of a recursive filter. The beamformer weights can then be computed from the corresponding recursive filtering operations. This leads to an algorithm that preserves the continuity of the parameter space and is capable to resolve any amount of DOA error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未知方位自适应贝叶斯波束形成的递归滤波方法
传统的波束形成算法需要完全了解源到达方向(DOA),以产生产生高信噪比(SINR)的波束形成器权重。我们将贝叶斯方法应用于自适应波束形成,使算法自动调谐到用户不知道先验的底层DOA。该波束形成器可以看作是根据数据驱动的后验概率密度函数(PDF)组合的最小方差无失真响应波束形成器的加权混合。以前的研究使用离散样本来捕捉后验PDF的空间变化。在这项工作中,我们表明,在均匀线性阵列(ULA)的情况下,后测PDF可以表示为前测PDF和许多von Mises PDFpsilas的乘积,每个PDFpsilas都由递归滤波器的频率响应近似。然后可以通过相应的递归滤波运算来计算波束形成器的权重。这就产生了一种保留参数空间连续性的算法,并且能够解决任意数量的DOA错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual-linear predictor approach to blind source extraction for noisy mixtures Optimal combination of fourth order statistics for non-circular source separation Blind channel identification and signal recovery by confining a component of the observations into a convex-hull of minimum volume Power-aware distributed detection in IR-UWB sensor networks Linear least squares based acoustic source localization utilizing energy measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1