M. Panahi, S. Masihi, D. Maddipatla, A. K. Bose, Sajjad Hajian, A. Hanson, V. Palaniappan, B. B. Narakathu, B. Bazuin, M. Atashbar
{"title":"Investigation of Temperature Effect on the Porosity of a Fabric Based Porous Capacitive Pressure Sensor","authors":"M. Panahi, S. Masihi, D. Maddipatla, A. K. Bose, Sajjad Hajian, A. Hanson, V. Palaniappan, B. B. Narakathu, B. Bazuin, M. Atashbar","doi":"10.1109/FLEPS49123.2020.9239439","DOIUrl":null,"url":null,"abstract":"A fabric based porous polydimethylsiloxane (PDMS) pressure sensor was developed and the effect of curing temperature on the porosity as well as the sensitivity was investigated. Three different porous PDMS dielectric layers (D1, D2 and D3) were prepared by curing a mixture of PDMS, sodium hydrogen bicarbonate (NaHCO3), and nitric acid (HNO3) at 110 $^{\\circ}C$, 140$^{\\circ}C$ and 170$^{\\circ}C$, respectively. The top and bottom electrodes of the pressure sensor were fabricated by screen printing silver (Ag) on a thermoplastic polyurethane (TPU) film. The screen-printed Ag-TPU film was permanently attached to a fabric using heat lamination process. Three pressure sensors, PS1, PS2 and PS3 were assembled by sandwiching the porous dielectric layers D1, D2 and D3 between the top and bottom electrodes, respectively. An average pore size of $411 \\mu \\mathrm{m}, 496 \\mu \\mathrm{m}$, and $502 \\mu \\mathrm{m}$ was measured for D1, D2 and D3, respectively. A relative capacitance change of $\\sim 100$%, $\\sim$ 323%, and $\\sim$ 485% was obtained for the pressure sensors PS1, PS2, PS3, respectively, for varying applied pressures ranging from 0 to 1000 kPa. The effect of curing temperatures on the thickness as well as the dielectric constant of the porous PDMS layer, which in turn changes the sensitivity of the pressure sensors, was investigated and is presented in this paper.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A fabric based porous polydimethylsiloxane (PDMS) pressure sensor was developed and the effect of curing temperature on the porosity as well as the sensitivity was investigated. Three different porous PDMS dielectric layers (D1, D2 and D3) were prepared by curing a mixture of PDMS, sodium hydrogen bicarbonate (NaHCO3), and nitric acid (HNO3) at 110 $^{\circ}C$, 140$^{\circ}C$ and 170$^{\circ}C$, respectively. The top and bottom electrodes of the pressure sensor were fabricated by screen printing silver (Ag) on a thermoplastic polyurethane (TPU) film. The screen-printed Ag-TPU film was permanently attached to a fabric using heat lamination process. Three pressure sensors, PS1, PS2 and PS3 were assembled by sandwiching the porous dielectric layers D1, D2 and D3 between the top and bottom electrodes, respectively. An average pore size of $411 \mu \mathrm{m}, 496 \mu \mathrm{m}$, and $502 \mu \mathrm{m}$ was measured for D1, D2 and D3, respectively. A relative capacitance change of $\sim 100$%, $\sim$ 323%, and $\sim$ 485% was obtained for the pressure sensors PS1, PS2, PS3, respectively, for varying applied pressures ranging from 0 to 1000 kPa. The effect of curing temperatures on the thickness as well as the dielectric constant of the porous PDMS layer, which in turn changes the sensitivity of the pressure sensors, was investigated and is presented in this paper.
研制了一种基于织物的多孔聚二甲基硅氧烷(PDMS)压力传感器,研究了固化温度对其孔隙率和灵敏度的影响。将PDMS、碳酸氢钠(NaHCO3)和硝酸(HNO3)的混合物分别固化在110 $^{\circ}C$、140 $^{\circ}C$和170 $^{\circ}C$的温度下,制备了3种不同多孔PDMS介电层D1、D2和D3。压力传感器的上电极和下电极是在热塑性聚氨酯(TPU)薄膜上丝网印刷银(Ag)制成的。丝网印刷Ag-TPU薄膜使用热层压工艺永久附着在织物上。将多孔介质层D1、D2和D3分别夹在上下电极之间,组装了3个压力传感器PS1、PS2和PS3。D1、D2和D3的平均孔径分别为$411 \mu \mathrm{m}, 496 \mu \mathrm{m}$和$502 \mu \mathrm{m}$。的相对电容变化 $\sim 100$%, $\sim$ 323%, and $\sim$ 485% was obtained for the pressure sensors PS1, PS2, PS3, respectively, for varying applied pressures ranging from 0 to 1000 kPa. The effect of curing temperatures on the thickness as well as the dielectric constant of the porous PDMS layer, which in turn changes the sensitivity of the pressure sensors, was investigated and is presented in this paper.