Task Fusion in Distributed Runtimes

S. Sundram, Wonchan Lee, A. Aiken
{"title":"Task Fusion in Distributed Runtimes","authors":"S. Sundram, Wonchan Lee, A. Aiken","doi":"10.1109/PAW-ATM56565.2022.00007","DOIUrl":null,"url":null,"abstract":"We present distributed task fusion, a run-time optimization for task-based runtimes operating on parallel and heterogeneous systems. Distributed task fusion dynamically performs an efficient buffering, analysis, and fusion of asynchronously-evaluated distributed operations, reducing the overheads inherent to scheduling distributed tasks in implicitly parallel frameworks and runtimes. We identify the constraints under which distributed task fusion is permissible and describe an implementation in Legate, a domain-agnostic library for constructing portable and scalable task-based libraries. We present performance results using cuNumeric, a Legate library that enables scalable execution of NumPy pipelines on parallel and heterogeneous systems. We realize speedups up to 1.5x with task fusion enabled on up to 32 P100 GPUs, thus demonstrating efficient execution of pipelines involving many successive fine-grained tasks. Finally, we discuss potential future work, including complementary optimizations that could result in additional performance improvements.","PeriodicalId":231452,"journal":{"name":"2022 IEEE/ACM Parallel Applications Workshop: Alternatives To MPI+X (PAW-ATM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM Parallel Applications Workshop: Alternatives To MPI+X (PAW-ATM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAW-ATM56565.2022.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present distributed task fusion, a run-time optimization for task-based runtimes operating on parallel and heterogeneous systems. Distributed task fusion dynamically performs an efficient buffering, analysis, and fusion of asynchronously-evaluated distributed operations, reducing the overheads inherent to scheduling distributed tasks in implicitly parallel frameworks and runtimes. We identify the constraints under which distributed task fusion is permissible and describe an implementation in Legate, a domain-agnostic library for constructing portable and scalable task-based libraries. We present performance results using cuNumeric, a Legate library that enables scalable execution of NumPy pipelines on parallel and heterogeneous systems. We realize speedups up to 1.5x with task fusion enabled on up to 32 P100 GPUs, thus demonstrating efficient execution of pipelines involving many successive fine-grained tasks. Finally, we discuss potential future work, including complementary optimizations that could result in additional performance improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式运行时中的任务融合
我们提出了分布式任务融合,这是一种在并行和异构系统上运行的基于任务的运行时优化。分布式任务融合动态地对异步评估的分布式操作执行有效的缓冲、分析和融合,从而减少了在隐式并行框架和运行时中调度分布式任务所固有的开销。我们确定了允许分布式任务融合的约束条件,并描述了Legate中的实现,Legate是一个用于构建可移植和可扩展的基于任务的库的领域不可知库。我们使用cuNumeric展示了性能结果,cuNumeric是一个Legate库,可以在并行和异构系统上可扩展地执行NumPy管道。在多达32个P100 gpu上启用任务融合后,我们实现了高达1.5倍的加速,从而展示了涉及许多连续细粒度任务的高效执行管道。最后,我们讨论了潜在的未来工作,包括可能导致额外性能改进的补充优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Performance Evaluation of UCX for Tofu-D Interconnect with OpenSHMEM-UCX on Fugaku Asynchronous Workload Balancing through Persistent Work-Stealing and Offloading for a Distributed Actor Model Library Task Fusion in Distributed Runtimes Composition of Algorithmic Building Blocks in Template Task Graphs Extending OpenMP and OpenSHMEM for Efficient Heterogeneous Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1