German NER with a Multilingual Rule Based Information Extraction System: Analysis and Issues

NEWS@ACM Pub Date : 2016-08-01 DOI:10.18653/v1/W16-2704
Anna Druzhkina, A. Leontyev, M. Stepanova
{"title":"German NER with a Multilingual Rule Based Information Extraction System: Analysis and Issues","authors":"Anna Druzhkina, A. Leontyev, M. Stepanova","doi":"10.18653/v1/W16-2704","DOIUrl":null,"url":null,"abstract":"This paper presents a rule-based approach to Named Entity Recognition for the German language. The approach rests upon deep linguistic parsing and has already been applied to English and Russian. In this paper we present the first results of our system, ABBYY InfoExtractor, on GermEval 2014 Shared Task corpus. We focus on the main challenges of German NER that we have encountered when adapting our system to German and possible solutions for them.","PeriodicalId":254249,"journal":{"name":"NEWS@ACM","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@ACM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a rule-based approach to Named Entity Recognition for the German language. The approach rests upon deep linguistic parsing and has already been applied to English and Russian. In this paper we present the first results of our system, ABBYY InfoExtractor, on GermEval 2014 Shared Task corpus. We focus on the main challenges of German NER that we have encountered when adapting our system to German and possible solutions for them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多语言规则的德语NER信息抽取系统:分析与问题
本文提出了一种基于规则的德语命名实体识别方法。该方法基于深度语言分析,并已应用于英语和俄语。在本文中,我们展示了我们的系统ABBYY InfoExtractor在德国2014年共享任务语料库上的第一个结果。我们将重点放在德国NER的主要挑战上,我们在将我们的系统调整为德语时遇到了这些挑战以及可能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-source named entity typing for social media Applying Neural Networks to English-Chinese Named Entity Transliteration Regulating Orthography-Phonology Relationship for English to Thai Transliteration Spanish NER with Word Representations and Conditional Random Fields German NER with a Multilingual Rule Based Information Extraction System: Analysis and Issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1