Beyond throughput: a 4G LTE dataset with channel and context metrics

Darijo Raca, Jason J. Quinlan, A. Zahran, C. Sreenan
{"title":"Beyond throughput: a 4G LTE dataset with channel and context metrics","authors":"Darijo Raca, Jason J. Quinlan, A. Zahran, C. Sreenan","doi":"10.1145/3204949.3208123","DOIUrl":null,"url":null,"abstract":"In this paper, we present a 4G trace dataset composed of client-side cellular key performance indicators (KPIs) collected from two major Irish mobile operators, across different mobility patterns (static, pedestrian, car, bus and train). The 4G trace dataset contains 135 traces, with an average duration of fifteen minutes per trace, with viewable throughput ranging from 0 to 173 Mbit/s at a granularity of one sample per second. Our traces are generated from a well-known non-rooted Android network monitoring application, G-NetTrack Pro. This tool enables capturing various channel related KPIs, context-related metrics, downlink and uplink throughput, and also cell-related information. To the best of our knowledge, this is the first publicly available dataset that contains throughput, channel and context information for 4G networks. To supplement our real-time 4G production network dataset, we also provide a synthetic dataset generated from a large-scale 4G ns-3 simulation that includes one hundred users randomly scattered across a seven-cell cluster. The purpose of this dataset is to provide additional information (such as competing metrics for users connected to the same cell), thus providing otherwise unavailable information about the eNodeB environment and scheduling principle, to end user. In addition to this dataset, we also provide the code and context information to allow other researchers to generate their own synthetic datasets.","PeriodicalId":141196,"journal":{"name":"Proceedings of the 9th ACM Multimedia Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204949.3208123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

Abstract

In this paper, we present a 4G trace dataset composed of client-side cellular key performance indicators (KPIs) collected from two major Irish mobile operators, across different mobility patterns (static, pedestrian, car, bus and train). The 4G trace dataset contains 135 traces, with an average duration of fifteen minutes per trace, with viewable throughput ranging from 0 to 173 Mbit/s at a granularity of one sample per second. Our traces are generated from a well-known non-rooted Android network monitoring application, G-NetTrack Pro. This tool enables capturing various channel related KPIs, context-related metrics, downlink and uplink throughput, and also cell-related information. To the best of our knowledge, this is the first publicly available dataset that contains throughput, channel and context information for 4G networks. To supplement our real-time 4G production network dataset, we also provide a synthetic dataset generated from a large-scale 4G ns-3 simulation that includes one hundred users randomly scattered across a seven-cell cluster. The purpose of this dataset is to provide additional information (such as competing metrics for users connected to the same cell), thus providing otherwise unavailable information about the eNodeB environment and scheduling principle, to end user. In addition to this dataset, we also provide the code and context information to allow other researchers to generate their own synthetic datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越吞吐量:具有通道和上下文度量的4G LTE数据集
在本文中,我们提出了一个4G跟踪数据集,该数据集由两家主要爱尔兰移动运营商收集的客户端蜂窝关键绩效指标(kpi)组成,涵盖不同的移动模式(静态、行人、汽车、公共汽车和火车)。4G跟踪数据集包含135个跟踪,每个跟踪的平均持续时间为15分钟,可视吞吐量范围为0到173 Mbit/s,粒度为每秒一个样本。我们的痕迹是由一个著名的非根Android网络监控应用程序生成的,G-NetTrack Pro。此工具支持捕获各种与信道相关的kpi、与上下文相关的度量、下行链路和上行链路吞吐量,以及与小区相关的信息。据我们所知,这是第一个包含4G网络吞吐量、信道和上下文信息的公开可用数据集。为了补充我们的实时4G生产网络数据集,我们还提供了一个从大规模4G ns-3模拟生成的合成数据集,该数据集包括100个随机分散在7个小区集群中的用户。此数据集的目的是提供额外的信息(例如连接到同一单元的用户的竞争指标),从而向最终用户提供有关eNodeB环境和调度原则的其他不可用的信息。除了这个数据集,我们还提供了代码和上下文信息,以允许其他研究人员生成他们自己的合成数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual object tracking in a parking garage using compressed domain analysis ISIFT VideoNOC OpenCV.js: computer vision processing for the open web platform Subdiv17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1