{"title":"Distributed-Particle-Swarm-Optimization-Incorporated Second-order Latent Factor Model","authors":"Jialiang Wang, Yurong Zhong, Weiling Li","doi":"10.1109/ICNSC55942.2022.10004102","DOIUrl":null,"url":null,"abstract":"Latent Factor (LF) models are effective in representing high-dimension and sparse (HiDS) data via low-rank matrices approximation. Building an LF model is a large-scale non-convex problem. Hessian-free (HF) optimization is an efficient method to utilizing second-order information of an LF model's objective function and it has been utilized to optimize second-order LF (SLF) model. However, the low-rank representation ability of a SLF model heavily relies on its multiple hyperparameters. Determining these hyperparameters is time-consuming and it largely reduces the practicability of an SLF model. To address this issue, a distributed adaptive SLF (DASLF) model is proposed in this work. It realizes hyperparameter self-adaptation with a distributed particle swarm optimizer (DPSO), which is gradient-free and parallelized. Experiments on real HiDS data sets indicate that DASLF model has a competitive advantage over state-of-the-art models in data representation ability.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Latent Factor (LF) models are effective in representing high-dimension and sparse (HiDS) data via low-rank matrices approximation. Building an LF model is a large-scale non-convex problem. Hessian-free (HF) optimization is an efficient method to utilizing second-order information of an LF model's objective function and it has been utilized to optimize second-order LF (SLF) model. However, the low-rank representation ability of a SLF model heavily relies on its multiple hyperparameters. Determining these hyperparameters is time-consuming and it largely reduces the practicability of an SLF model. To address this issue, a distributed adaptive SLF (DASLF) model is proposed in this work. It realizes hyperparameter self-adaptation with a distributed particle swarm optimizer (DPSO), which is gradient-free and parallelized. Experiments on real HiDS data sets indicate that DASLF model has a competitive advantage over state-of-the-art models in data representation ability.