Wi-Fi Radio Map Interpolation with Sparse and Correlated Received Signal Strength Measurements for Indoor Positioning

A. Kiring, H. T. Yew, Y. Y. Farm, Seng Kheau Chung, F. Wong, A. Chekima
{"title":"Wi-Fi Radio Map Interpolation with Sparse and Correlated Received Signal Strength Measurements for Indoor Positioning","authors":"A. Kiring, H. T. Yew, Y. Y. Farm, Seng Kheau Chung, F. Wong, A. Chekima","doi":"10.1109/IICAIET49801.2020.9257857","DOIUrl":null,"url":null,"abstract":"Wi-Fi based positioning fingerprint offers an accurate solution for indoor positioning techniques. It estimates the coordinates of a user or object by consulting an offline Wi-Fi radio map and searching for the best match of the currently observed Wi-Fi received signal strength (RSS) measurements. The construction of an offline Wi-Fi radio map is a laborious task in a large indoor floor plan. The offline radio map needs frequent maintenance if the data get faulted or need update due to the changes in indoor surroundings. This paper studies the effect of spatial correlation in the densely collected Wi-Fi measurements to enhanced the positioning accuracy. The K-nearest neighbour (KNN) and inverse distance weight (IDW) algorithms were implemented to interpolate the incomplete Wi-Fi radio map. The interpolation error is analysed with and without the correlation in the RSS measurements over different sparsity parameters. It is shown that at some sparsity parameter, the interpolation error reduces by 54% when the correlation exists in the collected Wi-Fi measurements.","PeriodicalId":300885,"journal":{"name":"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET49801.2020.9257857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Wi-Fi based positioning fingerprint offers an accurate solution for indoor positioning techniques. It estimates the coordinates of a user or object by consulting an offline Wi-Fi radio map and searching for the best match of the currently observed Wi-Fi received signal strength (RSS) measurements. The construction of an offline Wi-Fi radio map is a laborious task in a large indoor floor plan. The offline radio map needs frequent maintenance if the data get faulted or need update due to the changes in indoor surroundings. This paper studies the effect of spatial correlation in the densely collected Wi-Fi measurements to enhanced the positioning accuracy. The K-nearest neighbour (KNN) and inverse distance weight (IDW) algorithms were implemented to interpolate the incomplete Wi-Fi radio map. The interpolation error is analysed with and without the correlation in the RSS measurements over different sparsity parameters. It is shown that at some sparsity parameter, the interpolation error reduces by 54% when the correlation exists in the collected Wi-Fi measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏和相关接收信号强度测量的室内定位Wi-Fi无线地图插值
基于Wi-Fi的定位指纹为室内定位技术提供了准确的解决方案。它通过咨询离线Wi-Fi无线地图并搜索当前观察到的Wi-Fi接收信号强度(RSS)测量值的最佳匹配值来估计用户或物体的坐标。在大型室内平面图中,构建离线Wi-Fi无线地图是一项艰巨的任务。如果由于室内环境的变化导致数据出现故障或需要更新,则需要经常维护离线无线电地图。本文研究了密集采集的Wi-Fi测量数据中空间相关性对提高定位精度的影响。采用k近邻(KNN)和逆距离加权(IDW)算法对不完整的Wi-Fi无线地图进行插值。分析了不同稀疏度参数下RSS测量值在有无相关性的情况下的插值误差。结果表明,在某些稀疏度参数下,当采集到的Wi-Fi测量值存在相关性时,插值误差降低了54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating the Number of Cameras Required for a Given Classroom for Face-based Smart Attendance System Stock Market Prediction using Ensemble of Deep Neural Networks Timed Cellular Automata for Flight Delay Scheduling Optimization Experimenting Deep Convolutional Visual Feature Learning using Compositional Subspace Representation and Fashion-MNIST An Investigation of the Effect of Different Number of Electrodes on EIT Reconstructed Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1