Adaptive Selection of Classifier Ensemble Based on GMDH

Jin Xiao, Changzheng He
{"title":"Adaptive Selection of Classifier Ensemble Based on GMDH","authors":"Jin Xiao, Changzheng He","doi":"10.1109/FITME.2008.132","DOIUrl":null,"url":null,"abstract":"In multiple classifiers combination, how to choose an effective combination method is a very critical issue. This article introduces group method of data handing (GMDH) theory into multiple classifiers combination, and proposes a novel algorithm GAES for classifier ensemble selection. It is able to select an appropriate ensemble from the classifier pool adaptively, determine the combination weights among base classifiers, and complete the combination process automatically. We experimentally test GAES over 16 UCI data sets and 4 ELENA data sets. The results show that compared with the commonly used combination methods, GAES is statistically superior to Bayesian (Kittler et al., 1998), Linear (Benediktsson et al., 1997) and ESNN (Lipnickas and Korbicz, 2004) methods, and achieves a comparable classification rate than MAJ (Xu et al., 1992) and Genetic (Cho, 1999).","PeriodicalId":218182,"journal":{"name":"2008 International Seminar on Future Information Technology and Management Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2008.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In multiple classifiers combination, how to choose an effective combination method is a very critical issue. This article introduces group method of data handing (GMDH) theory into multiple classifiers combination, and proposes a novel algorithm GAES for classifier ensemble selection. It is able to select an appropriate ensemble from the classifier pool adaptively, determine the combination weights among base classifiers, and complete the combination process automatically. We experimentally test GAES over 16 UCI data sets and 4 ELENA data sets. The results show that compared with the commonly used combination methods, GAES is statistically superior to Bayesian (Kittler et al., 1998), Linear (Benediktsson et al., 1997) and ESNN (Lipnickas and Korbicz, 2004) methods, and achieves a comparable classification rate than MAJ (Xu et al., 1992) and Genetic (Cho, 1999).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GMDH的分类器集成自适应选择
在多分类器组合中,如何选择一种有效的组合方法是一个非常关键的问题。将数据处理的分组方法(GMDH)理论引入到多分类器组合中,提出了一种新的分类器集成选择算法GAES。它能够自适应地从分类器池中选择合适的集成,确定基分类器之间的组合权值,并自动完成组合过程。我们在16个UCI数据集和4个ELENA数据集上对游戏进行了实验测试。结果表明,与常用的组合方法相比,GAES在统计上优于Bayesian (Kittler et al., 1998)、Linear (Benediktsson et al., 1997)和ESNN (Lipnickas and Korbicz, 2004)方法,并且与MAJ (Xu et al., 1992)和Genetic (Cho, 1999)的分类率相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of the Uncertain Resource Objects in the Network Resource Management A Distributed Platform Based on HBWSP&XML for Net Resources Sharing The Framework of Total Decision Support Based on Knowledge Management The Study on Spatial Data of Across-district Emergency Response Information Sharing System How to Identify Equity Market Timing Risk: Case Study of Ping an Insurance's Financing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1