Super Normal Vector for Activity Recognition Using Depth Sequences

Xiaodong Yang, Yingli Tian
{"title":"Super Normal Vector for Activity Recognition Using Depth Sequences","authors":"Xiaodong Yang, Yingli Tian","doi":"10.1109/CVPR.2014.108","DOIUrl":null,"url":null,"abstract":"This paper presents a new framework for human activity recognition from video sequences captured by a depth camera. We cluster hypersurface normals in a depth sequence to form the polynormal which is used to jointly characterize the local motion and shape information. In order to globally capture the spatial and temporal orders, an adaptive spatio-temporal pyramid is introduced to subdivide a depth video into a set of space-time grids. We then propose a novel scheme of aggregating the low-level polynormals into the super normal vector (SNV) which can be seen as a simplified version of the Fisher kernel representation. In the extensive experiments, we achieve classification results superior to all previous published results on the four public benchmark datasets, i.e., MSRAction3D, MSRDailyActivity3D, MSRGesture3D, and MSRActionPairs3D.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"373","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 373

Abstract

This paper presents a new framework for human activity recognition from video sequences captured by a depth camera. We cluster hypersurface normals in a depth sequence to form the polynormal which is used to jointly characterize the local motion and shape information. In order to globally capture the spatial and temporal orders, an adaptive spatio-temporal pyramid is introduced to subdivide a depth video into a set of space-time grids. We then propose a novel scheme of aggregating the low-level polynormals into the super normal vector (SNV) which can be seen as a simplified version of the Fisher kernel representation. In the extensive experiments, we achieve classification results superior to all previous published results on the four public benchmark datasets, i.e., MSRAction3D, MSRDailyActivity3D, MSRGesture3D, and MSRActionPairs3D.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度序列进行活动识别的超常规向量
本文提出了一种基于深度摄像机视频序列的人体活动识别新框架。我们将超表面法线在一个深度序列中聚类形成多法线,多法线用于共同表征局部运动和形状信息。为了全局捕获深度视频的时空顺序,引入自适应时空金字塔将深度视频细分为一组时空网格。然后,我们提出了一种将低级多法线聚合到超正常向量(SNV)中的新方案,该方案可以看作是Fisher核表示的简化版本。在广泛的实验中,我们在MSRAction3D、MSRDailyActivity3D、MSRGesture3D和MSRActionPairs3D四个公共基准数据集上获得的分类结果优于以往发表的所有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Visual Knowledge Bases via Object Discovery and Segmentation Multiple Structured-Instance Learning for Semantic Segmentation with Uncertain Training Data Parsing Occluded People L0 Norm Based Dictionary Learning by Proximal Methods with Global Convergence Generalized Pupil-centric Imaging and Analytical Calibration for a Non-frontal Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1