The study of characteristics of the hybrid particle swarm algorithm in solution of the global optimization problem

L. Demidova, I. Klyueva, A. Pylkin
{"title":"The study of characteristics of the hybrid particle swarm algorithm in solution of the global optimization problem","authors":"L. Demidova, I. Klyueva, A. Pylkin","doi":"10.1109/MECO.2016.7525772","DOIUrl":null,"url":null,"abstract":"The present paper considers convergence characteristics of the particle swarm algorithm and its modification - the hybrid PSO-GS algorithm obtained under combination of the PSO algorithm and Grid Search algorithm. Comparison of quality indices of the particle swarm algorithm and the steepest descent algorithm has been carried out for evaluation of advantages of the PSO algorithm in comparison with classical optimization algorithms.","PeriodicalId":253666,"journal":{"name":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2016.7525772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The present paper considers convergence characteristics of the particle swarm algorithm and its modification - the hybrid PSO-GS algorithm obtained under combination of the PSO algorithm and Grid Search algorithm. Comparison of quality indices of the particle swarm algorithm and the steepest descent algorithm has been carried out for evaluation of advantages of the PSO algorithm in comparison with classical optimization algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合粒子群算法求解全局优化问题的特性研究
本文考虑了粒子群算法的收敛特性及其改进——将粒子群算法与网格搜索算法结合得到的混合PSO- gs算法。通过比较粒子群算法和最陡下降算法的质量指标,评价粒子群算法与经典优化算法相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logo watermarking for speech signal protection in the compressive sensing scenario Unaliasing of undersampled spectra Driving behavior simulator of lane changing using user-designed interface Prediction of children diseases using semantics Comparative analysis of classification algorithms on three different datasets using WEKA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1