GPU Acceleration of Wave Based Transmission Tomography

Hongjian Wang, T. Huynh, H. Gemmeke, T. Hopp, J. Hesser
{"title":"GPU Acceleration of Wave Based Transmission Tomography","authors":"Hongjian Wang, T. Huynh, H. Gemmeke, T. Hopp, J. Hesser","doi":"10.1109/ISBI.2019.8759453","DOIUrl":null,"url":null,"abstract":"To accelerate the process of 3D ultrasound computed tomography, we parallelize the most time-consuming part of a paraxial forward model on GPU, where massive complex multiplications and 2D Fourier transforms have to be performed iteratively. We test our GPU implementation on a synthesized symmetric breast phantom with different sizes. In the best case, for only one emitter position, the speedup of a desktop GPU reaches 23 times when the data transfer time is included, and 100 times when only GPU parallel computing time is considered. In the worst case, the speedup of a less powerful laptop GPU is still 2.5 times over a six-core desktop CPU, when the data transfer time is included. For the correctness of the values computed on GPU, the maximum percent deviation of L2 norm is only 0.014%.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To accelerate the process of 3D ultrasound computed tomography, we parallelize the most time-consuming part of a paraxial forward model on GPU, where massive complex multiplications and 2D Fourier transforms have to be performed iteratively. We test our GPU implementation on a synthesized symmetric breast phantom with different sizes. In the best case, for only one emitter position, the speedup of a desktop GPU reaches 23 times when the data transfer time is included, and 100 times when only GPU parallel computing time is considered. In the worst case, the speedup of a less powerful laptop GPU is still 2.5 times over a six-core desktop CPU, when the data transfer time is included. For the correctness of the values computed on GPU, the maximum percent deviation of L2 norm is only 0.014%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于波的透射层析成像的GPU加速
为了加速三维超声计算机断层扫描的过程,我们在GPU上并行化了最耗时的近轴正演模型部分,其中大量的复乘法和二维傅里叶变换必须迭代执行。我们在不同尺寸的合成对称乳房幻影上测试了我们的GPU实现。在最佳情况下,仅对一个发射器位置,考虑数据传输时间时,桌面GPU的加速可达23倍,仅考虑GPU并行计算时间时,加速可达100倍。在最坏的情况下,考虑到数据传输时间,性能较差的笔记本电脑GPU的加速速度仍然是六核桌面CPU的2.5倍。对于GPU上计算值的正确性,L2范数的最大偏差百分比仅为0.014%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1