Designing Deep Transfer Networks for Bearing Fault Diagnosis With Heterogeneous Data Fusion

Yunsheng Su, Zequn Wang
{"title":"Designing Deep Transfer Networks for Bearing Fault Diagnosis With Heterogeneous Data Fusion","authors":"Yunsheng Su, Zequn Wang","doi":"10.1115/detc2020-22203","DOIUrl":null,"url":null,"abstract":"\n Accurate fault defection of bearing is critical in condition-based maintenance to improve system reliability and reduce operational cost. This paper introduces a deep transfer learning-based approach for bearing fault diagnosis by fusing heterogeneous information from multiple sources. Convolutional neural networks (CNN) are first designed to extract critical features by mapping extremely high-dimensional signals such as vibration and images to a much lower dimensional latent space. By partially retaining the resultant CNN architectures and parameters, it becomes possible to transfer and fuse the knowledge gained from multiple heterogeneous sources to improve the robustness and accuracy of fault diagnosis of bearings. With the prior knowledge, a deep transfer learning (DTL) architecture is designed to incorporate the heterogeneous data and trained to detect bearing faults. To future improve the performance of bearing fault diagnosis, a performance-driven optimization approach is developed to optimize the validation accuracy of bearing diagnosis by successively designing the architectures of the deep transfer networks. The CWRU experimental data is utilized to demonstrate the performance of the proposed approach.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate fault defection of bearing is critical in condition-based maintenance to improve system reliability and reduce operational cost. This paper introduces a deep transfer learning-based approach for bearing fault diagnosis by fusing heterogeneous information from multiple sources. Convolutional neural networks (CNN) are first designed to extract critical features by mapping extremely high-dimensional signals such as vibration and images to a much lower dimensional latent space. By partially retaining the resultant CNN architectures and parameters, it becomes possible to transfer and fuse the knowledge gained from multiple heterogeneous sources to improve the robustness and accuracy of fault diagnosis of bearings. With the prior knowledge, a deep transfer learning (DTL) architecture is designed to incorporate the heterogeneous data and trained to detect bearing faults. To future improve the performance of bearing fault diagnosis, a performance-driven optimization approach is developed to optimize the validation accuracy of bearing diagnosis by successively designing the architectures of the deep transfer networks. The CWRU experimental data is utilized to demonstrate the performance of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于异构数据融合的轴承故障诊断深度传递网络设计
在状态维修中,准确的轴承故障检测是提高系统可靠性和降低运行成本的关键。介绍了一种基于深度迁移学习的多源异构信息融合轴承故障诊断方法。卷积神经网络(CNN)首先被设计为通过将极高维度的信号(如振动和图像)映射到低维度的潜在空间来提取关键特征。通过部分保留所得的CNN结构和参数,可以将从多个异构源获得的知识进行传递和融合,从而提高轴承故障诊断的鲁棒性和准确性。利用先验知识,设计了一种深度迁移学习(DTL)体系结构,将异构数据整合并训练以检测轴承故障。为了进一步提高轴承故障诊断的性能,提出了一种性能驱动的优化方法,通过连续设计深度传递网络的体系结构来优化轴承故障诊断的验证精度。利用CWRU实验数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extrapolation With Gaussian Random Processes and Evolutionary Programming Design and Optimization of Functionally Graded Superelastic NiTi Stents Topic Modeling and Sentiment Analysis of Social Media Data to Drive Experiential Redesign Risk-Averse Optimization for Resilience Enhancement Under Uncertainty Multi-Objective Design Exploration of a Canine Ventriculoperitoneal Shunt for Hydrocephalus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1