{"title":"Multi-Scale Local Feature Fusion Network for Facial Expression Recognition","authors":"Xusong Luo, J. Xiao, Aimin Xiong, Hongbin Zhang","doi":"10.1109/aemcse55572.2022.00146","DOIUrl":null,"url":null,"abstract":"To solve the problem that facial expression recognition (FER) system in actual application scenariosis always interfered by complex background which lead to low accuracy, we designed a multi-scale local feature fusion network (MSLFnet) to improve the performance of FER in actual application scenarios. Middle-level facial features map are extracted from the backbone, and the middle-level local feature is generated by a patch-level local attention module, the network can obtain richer facial expressions. Experiments is carried out on the FER datasets RAF-DB and FER+ to verify the efficacy of the network. Experimental results show that the accuracy of the proposed network on RAF-DB and FER+ is 2.5% and 1% higher than original ResNet-18, proving the effectiveness of MSLFnet.","PeriodicalId":309096,"journal":{"name":"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aemcse55572.2022.00146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problem that facial expression recognition (FER) system in actual application scenariosis always interfered by complex background which lead to low accuracy, we designed a multi-scale local feature fusion network (MSLFnet) to improve the performance of FER in actual application scenarios. Middle-level facial features map are extracted from the backbone, and the middle-level local feature is generated by a patch-level local attention module, the network can obtain richer facial expressions. Experiments is carried out on the FER datasets RAF-DB and FER+ to verify the efficacy of the network. Experimental results show that the accuracy of the proposed network on RAF-DB and FER+ is 2.5% and 1% higher than original ResNet-18, proving the effectiveness of MSLFnet.