Classification of Incoming Messages of the University Admission Campaign

N. Smirnov, A. S. Trifonov
{"title":"Classification of Incoming Messages of the University Admission Campaign","authors":"N. Smirnov, A. S. Trifonov","doi":"10.1109/SmartIndustryCon57312.2023.10110769","DOIUrl":null,"url":null,"abstract":"This paper deals with the task of text messages classification. The authors analyzed and reviewed the results of other researchers in this task and provided a brief overview of the machine learning and deep learning methods used in the study. The dataset of 1200 incoming messages of university admission campaign was used in the study. The authors pre-processed message texts, classified messages in three ways and applied three types of text vectorization. Based on machine learning and deep learning methods, the authors developed and applied multiclass and binary message classifiers. The paper presents classification metrics and confusion matrices for tasks of multiclass and multilabel classification. The models that provide the highest f1 score were selected as the best models.","PeriodicalId":157877,"journal":{"name":"2023 International Russian Smart Industry Conference (SmartIndustryCon)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Russian Smart Industry Conference (SmartIndustryCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIndustryCon57312.2023.10110769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the task of text messages classification. The authors analyzed and reviewed the results of other researchers in this task and provided a brief overview of the machine learning and deep learning methods used in the study. The dataset of 1200 incoming messages of university admission campaign was used in the study. The authors pre-processed message texts, classified messages in three ways and applied three types of text vectorization. Based on machine learning and deep learning methods, the authors developed and applied multiclass and binary message classifiers. The paper presents classification metrics and confusion matrices for tasks of multiclass and multilabel classification. The models that provide the highest f1 score were selected as the best models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大学招生活动的讯息分类
本文主要研究短信分类问题。作者分析和回顾了其他研究人员在这项任务中的结果,并简要概述了研究中使用的机器学习和深度学习方法。本研究使用的数据集为1200条大学录取信息。对短信文本进行预处理,对短信进行三种分类,并应用了三种文本矢量化方法。基于机器学习和深度学习方法,作者开发并应用了多类和二元消息分类器。本文提出了多类别和多标签分类任务的分类度量和混淆矩阵。选取f1得分最高的模型作为最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approach to Efficient Task Allocation and Cost Minimization in Collaborative Robotic Systems Modification of the Risk Potential Predicting Algorithm for Monitoring the State of the NPP Power Unit Identification of a Depressive State Among Users of the Vkontakte Social Network An Approach to Improving the Efficiency of the Database of a Large Industrial Enterprise Development of an Integrated Expert System for Distribution Network Diagnostics Based on Artificial Intelligence Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1