Hadamard Transform Improvement for HEVC using Intel AVX-512

Jackson Teh Ka Sing, Usman Ullah Sheikh, M. Mokji, N. Alias
{"title":"Hadamard Transform Improvement for HEVC using Intel AVX-512","authors":"Jackson Teh Ka Sing, Usman Ullah Sheikh, M. Mokji, N. Alias","doi":"10.1109/ISCAIE.2019.8743904","DOIUrl":null,"url":null,"abstract":"High Efficiency Video Coding (HEVC) doubles the data compression ratio compared to previous generation compression technology, Moving Picture Expert Group-Advanced Video Codec (MPEG-AVC/H.264) without sacrificing the image quality. However, this superior compression comes at the cost of more computation payload resulting in longer time for encoding and decoding. This work proposes the vectorization on HEVC data heavy computation algorithm, Hadamard Transform or Sum of Absolute Transform Difference (SATD) and Sum of Absolute Difference (SAD) to achieve optimized compression performance. Single Instruction Multiple Data (SIMD) acceleration will be based on the Intel AVX-512 (Advanced Vector Extension) Instruction Set Architecture (ISA). Since HEVC supports more coding tree block (CTB) sizes, SATD and SAD algorithms eventually become more complex compared to AVC. As a result, SATD and SAD algorithms with various block sizes will be subjected to SIMD acceleration. We provide performance evaluation based on different SIMD ISA and without SIMD implementation on HEVC SATD and SAD and found that AVX-512 optimized implementation performed faster when compared to non- optimized SATD and SAD but showed signs of reduced performance when compared to SSE optimized SATD and SAD.","PeriodicalId":369098,"journal":{"name":"2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":"8 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAIE.2019.8743904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High Efficiency Video Coding (HEVC) doubles the data compression ratio compared to previous generation compression technology, Moving Picture Expert Group-Advanced Video Codec (MPEG-AVC/H.264) without sacrificing the image quality. However, this superior compression comes at the cost of more computation payload resulting in longer time for encoding and decoding. This work proposes the vectorization on HEVC data heavy computation algorithm, Hadamard Transform or Sum of Absolute Transform Difference (SATD) and Sum of Absolute Difference (SAD) to achieve optimized compression performance. Single Instruction Multiple Data (SIMD) acceleration will be based on the Intel AVX-512 (Advanced Vector Extension) Instruction Set Architecture (ISA). Since HEVC supports more coding tree block (CTB) sizes, SATD and SAD algorithms eventually become more complex compared to AVC. As a result, SATD and SAD algorithms with various block sizes will be subjected to SIMD acceleration. We provide performance evaluation based on different SIMD ISA and without SIMD implementation on HEVC SATD and SAD and found that AVX-512 optimized implementation performed faster when compared to non- optimized SATD and SAD but showed signs of reduced performance when compared to SSE optimized SATD and SAD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hadamard变换改进HEVC使用英特尔AVX-512
高效视频编码(HEVC)在不牺牲图像质量的前提下,将数据压缩比(MPEG-AVC/H.264)提高了一倍。然而,这种优越的压缩是以更多的计算负载为代价的,从而导致更长的编码和解码时间。本文提出了对HEVC数据进行矢量化的重计算算法,即Hadamard变换或绝对变换差和(SATD)和绝对差和(SAD),以实现优化的压缩性能。单指令多数据(SIMD)加速将基于英特尔AVX-512(高级矢量扩展)指令集架构(ISA)。由于HEVC支持更多的编码树块(CTB)大小,因此与AVC相比,SATD和SAD算法最终会变得更加复杂。因此,具有不同块大小的SATD和SAD算法将受到SIMD加速的影响。我们在HEVC SATD和SAD上提供了基于不同SIMD ISA和没有SIMD实现的性能评估,并发现AVX-512优化实现与未优化的SATD和SAD相比执行速度更快,但与SSE优化的SATD和SAD相比表现出性能降低的迹象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing the Maturity Model for Gig Economy Business Processes Dark Data Management as frontier of Information Governance Information Governance derivatives of Social Solidarity Economy Initiatives Exponentially Adaptive Sine-Cosine Algorithm for Global Optimization Wireless Hand Gesture Controlled Robotic Arm Via NRF24L01 Transceiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1