A self-tuning PID design based on wavelet neural network using Lyapunov method

M. Farahani, S. Ganjefar, M. Alizadeh
{"title":"A self-tuning PID design based on wavelet neural network using Lyapunov method","authors":"M. Farahani, S. Ganjefar, M. Alizadeh","doi":"10.1109/ICCIAUTOM.2011.6356671","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive self-tuning PID controller based on the Lyapunov method. To tune the gains of PID controller, a self-tuning algorithm derived by the Lyapunov method is employed. Hence, the control error converges to zero and the stability of the controlled system is guaranteed. To accommodate the controller, the wavelet neural network (WNN) is used. The simulation results are used to demonstrate the effectiveness of designed controller. With the proposed controller, the controlled system possesses the advantages of good tracking control performance and robustness to unknown process.","PeriodicalId":438427,"journal":{"name":"The 2nd International Conference on Control, Instrumentation and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Control, Instrumentation and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6356671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an adaptive self-tuning PID controller based on the Lyapunov method. To tune the gains of PID controller, a self-tuning algorithm derived by the Lyapunov method is employed. Hence, the control error converges to zero and the stability of the controlled system is guaranteed. To accommodate the controller, the wavelet neural network (WNN) is used. The simulation results are used to demonstrate the effectiveness of designed controller. With the proposed controller, the controlled system possesses the advantages of good tracking control performance and robustness to unknown process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Lyapunov方法的小波神经网络自整定PID设计
提出了一种基于李雅普诺夫方法的自适应自整定PID控制器。为了对PID控制器的增益进行整定,采用了由李雅普诺夫方法导出的自整定算法。因此,控制误差收敛于零,保证了被控系统的稳定性。为了适应控制器,采用了小波神经网络(WNN)。仿真结果验证了所设计控制器的有效性。该控制器具有良好的跟踪控制性能和对未知过程的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal design of adaptive interval type-2 fuzzy sliding mode control using Genetic algorithm Constrained model predictive control of PEM fuel cell with guaranteed stability Optimal control of an autonomous underwater vehicle using IPSO_SQP algorithm Design of an on-line recurrent wavelet network controller for a class of nonlinear systems Exact pupil and iris boundary detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1