Interactive verification of game design and playing strategies

Dimitris Kalles, Eirini Ntoutsi
{"title":"Interactive verification of game design and playing strategies","authors":"Dimitris Kalles, Eirini Ntoutsi","doi":"10.1109/TAI.2002.1180834","DOIUrl":null,"url":null,"abstract":"Reinforcement learning is considered as one of the most suitable and prominent methods for solving game problems due to its capability to discover good strategies by extended se self-training and limited initial knowledge. In this paper we elaborate on using reinforcement learning for verifying game designs and playing strategies. Specifically, we examine a new strategy game that has been trained on self-playing games and analyze the game performance after human interaction. We demonstrate, through selected game instances, the impact of human interference to the learning process, and eventually the game design.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Reinforcement learning is considered as one of the most suitable and prominent methods for solving game problems due to its capability to discover good strategies by extended se self-training and limited initial knowledge. In this paper we elaborate on using reinforcement learning for verifying game designs and playing strategies. Specifically, we examine a new strategy game that has been trained on self-playing games and analyze the game performance after human interaction. We demonstrate, through selected game instances, the impact of human interference to the learning process, and eventually the game design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
游戏设计和玩法策略的互动验证
由于强化学习能够通过扩展自我训练和有限的初始知识发现良好的策略,因此被认为是解决博弈问题最合适和最突出的方法之一。在本文中,我们详细阐述了使用强化学习来验证游戏设计和游戏策略。具体来说,我们研究了一种新的策略游戏,它已经在自玩游戏上进行了训练,并分析了人类互动后的游戏表现。通过选定的游戏实例,我们证明了人类干预对学习过程的影响,并最终影响了游戏设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning for software engineering: case studies in software reuse Active tracking and cloning of facial expressions using spatio-temporal information Fusing cooperative technical-specification knowledge components Ontology construction for information selection An intelligent brokering system to support multi-agent Web-based 4/sup th/-party logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1