Emotion Recognition from Speech Using IG-Based Feature Compensation

Chung-Hsien Wu, Ze-Jing Chuang
{"title":"Emotion Recognition from Speech Using IG-Based Feature Compensation","authors":"Chung-Hsien Wu, Ze-Jing Chuang","doi":"10.30019/IJCLCLP.200703.0005","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to feature compensation for emotion recognition from speech signals. In this approach, the intonation groups (IGs) of the input speech signals are extracted first. The speech features in each selected intonation group are then extracted. With the assumption of linear mapping between feature spaces in different emotional states, a feature compensation approach is proposed to characterize feature space with better discriminability among emotional states. The compensation vector with respect to each emotional state is estimated using the Minimum Classification Error (MCE) algorithm. For the final emotional state decision, the compensated IG-based feature vectors are used to train the Gaussian Mixture Models (GMMs) and Continuous Support Vector Machine (CSVMs) for each emotional state. For GMMs, the emotional state with the GMM having the maximal likelihood ratio is determined as the final output. For CSVMs, the emotional state is determined according to the probability outputs from the CSVMs. The kernel function in CSVM is experimentally decided as a Radial basis function. A comparison in the experiments shows that the proposed IG-based feature compensation can obtain encouraging performance for emotion recognition.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.200703.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents an approach to feature compensation for emotion recognition from speech signals. In this approach, the intonation groups (IGs) of the input speech signals are extracted first. The speech features in each selected intonation group are then extracted. With the assumption of linear mapping between feature spaces in different emotional states, a feature compensation approach is proposed to characterize feature space with better discriminability among emotional states. The compensation vector with respect to each emotional state is estimated using the Minimum Classification Error (MCE) algorithm. For the final emotional state decision, the compensated IG-based feature vectors are used to train the Gaussian Mixture Models (GMMs) and Continuous Support Vector Machine (CSVMs) for each emotional state. For GMMs, the emotional state with the GMM having the maximal likelihood ratio is determined as the final output. For CSVMs, the emotional state is determined according to the probability outputs from the CSVMs. The kernel function in CSVM is experimentally decided as a Radial basis function. A comparison in the experiments shows that the proposed IG-based feature compensation can obtain encouraging performance for emotion recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ig特征补偿的语音情感识别
提出了一种基于语音信号特征补偿的情感识别方法。在该方法中,首先提取输入语音信号的语调组(IGs)。然后提取每个选定语调组的语音特征。在假设不同情绪状态下特征空间之间存在线性映射的前提下,提出了一种特征补偿方法来表征不同情绪状态下的特征空间。使用最小分类误差(MCE)算法估计每个情绪状态的补偿向量。对于最终的情绪状态决策,使用补偿的基于ig的特征向量来训练每种情绪状态的高斯混合模型(GMMs)和连续支持向量机(csvm)。对于GMM,确定具有最大似然比的GMM的情绪状态作为最终输出。对于csvm,情绪状态是根据csvm的概率输出来确定的。实验确定了CSVM的核函数为径向基函数。实验对比表明,本文提出的基于ig的特征补偿方法能够获得令人满意的情感识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1