Data Augmentation for Face Recognition System Implemented in Multiple Transform Domains

Ramy C. G. Chehata, W. Mikhael
{"title":"Data Augmentation for Face Recognition System Implemented in Multiple Transform Domains","authors":"Ramy C. G. Chehata, W. Mikhael","doi":"10.1109/MWSCAS.2019.8885339","DOIUrl":null,"url":null,"abstract":"A face recognition system which represents each of the augmented facial images as a superposition of the dominant components in two transform domains is proposed. Each face in the spatial domain is divided into horizontal, vertical halves and diagonal format. These partitions are concatenated to generate four more faces per subject in any database used. All images are first preprocessed then compressed using two different domains. The Discrete Wavelet Transform (DWT) and the Discrete Cosine Transform (DCT). Accordingly, each face will have two feature matrices. A voting scheme is used to define ground truth identity. The performance of the proposed system is evaluated using k-fold cross validation of ORL, Yale and FERET databases. Sample results are presented. The proposed technique achieves higher recognition rates while retaining 74% savings in storage recently reported.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A face recognition system which represents each of the augmented facial images as a superposition of the dominant components in two transform domains is proposed. Each face in the spatial domain is divided into horizontal, vertical halves and diagonal format. These partitions are concatenated to generate four more faces per subject in any database used. All images are first preprocessed then compressed using two different domains. The Discrete Wavelet Transform (DWT) and the Discrete Cosine Transform (DCT). Accordingly, each face will have two feature matrices. A voting scheme is used to define ground truth identity. The performance of the proposed system is evaluated using k-fold cross validation of ORL, Yale and FERET databases. Sample results are presented. The proposed technique achieves higher recognition rates while retaining 74% savings in storage recently reported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多变换域的人脸识别系统数据增强
提出了一种将增强后的人脸图像表示为两个变换域中优势分量的叠加的人脸识别系统。空间域中的每个面被分为水平、垂直和对角三种形式。这些分区被连接起来,在使用的任何数据库中为每个主题多生成四个面孔。所有图像首先进行预处理,然后使用两个不同的域进行压缩。离散小波变换(DWT)和离散余弦变换(DCT)。因此,每个人脸将有两个特征矩阵。一个投票方案被用来定义真实身份。使用ORL、Yale和FERET数据库的k-fold交叉验证来评估所提出系统的性能。给出了样本结果。所提出的技术实现了更高的识别率,同时保留了74%的存储节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Artificial Neural Network(ANN) and Support Vector Machine(SVM) Classifiers for Neural Seizure Detection A New Hardware Accelerator for Data Sorting in Area & Energy Constrained Architectures Design Techniques for Zero Steady-State Output Ripple in Digital Low Dropout Regulators Spectrum-Efficient Communication Over Copper Using Hybrid Amplitude and Spatial Signaling AI, IoT hardware and Algorithmic Considerations for Hearing aid and Extreme Edge Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1