Hierarchical Modeling of Binding Affinity Prediction Using Machine LearningTechniques

Sofia D'souza, K. Prema, S. Balaji
{"title":"Hierarchical Modeling of Binding Affinity Prediction Using Machine LearningTechniques","authors":"Sofia D'souza, K. Prema, S. Balaji","doi":"10.1109/DISCOVER52564.2021.9663690","DOIUrl":null,"url":null,"abstract":"Predicting the binding affinity of compounds is an essential task in drug discovery. In silico QSAR regression and classification models to predict drug-target interaction can help speed up identifying the most potent compounds. Machine learning-based QSAR models were developed to predict the binding affinity of compounds against different targets using the experimental values or labels. In this work, we modeled the binding affinity prediction of SARS-3CL protease inhibitors using hierarchical modeling. We developed the Base classification and regression models using KNN, SVM, RF, and XGBoost techniques. Further, the predictions of the base models were concatenated and provided as inputs for the stacked models. The results indicate that stacking of models hierarchically leads to improved performances on both classification and regression endpoints.","PeriodicalId":413789,"journal":{"name":"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER52564.2021.9663690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Predicting the binding affinity of compounds is an essential task in drug discovery. In silico QSAR regression and classification models to predict drug-target interaction can help speed up identifying the most potent compounds. Machine learning-based QSAR models were developed to predict the binding affinity of compounds against different targets using the experimental values or labels. In this work, we modeled the binding affinity prediction of SARS-3CL protease inhibitors using hierarchical modeling. We developed the Base classification and regression models using KNN, SVM, RF, and XGBoost techniques. Further, the predictions of the base models were concatenated and provided as inputs for the stacked models. The results indicate that stacking of models hierarchically leads to improved performances on both classification and regression endpoints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习技术的绑定亲和预测分层建模
预测化合物的结合亲和力是药物发现中的一项重要任务。在硅QSAR回归和分类模型预测药物-靶标相互作用可以帮助加快识别最有效的化合物。开发了基于机器学习的QSAR模型,利用实验值或标签来预测化合物对不同目标的结合亲和力。在这项工作中,我们使用分层模型模拟了SARS-3CL蛋白酶抑制剂的结合亲和力预测。我们使用KNN、SVM、RF和XGBoost技术开发了基本分类和回归模型。此外,将基本模型的预测结果连接起来,作为堆叠模型的输入。结果表明,分层叠加模型可以提高分类和回归端点的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biosensors for the Detection of Toxic Contaminants from Water Reservoirs Essential for Potable and Agriculture Needs: A Review High Performance Variable Precision Multiplier and Accumulator Unit for Digital Filter Applications PCA and SVM Technique for Epileptic Seizure Classification Design and Analysis of Self-write-terminated Hybrid STT-MTJ/CMOS Logic Gates using LIM Architecture Joint Trajectory Tracking of Two- link Flexible Manipulator in Presence of Matched Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1