{"title":"Simsearcher: a local similarity search engine for biological sequence databases","authors":"Tian-Haw Tsai, Suh-Yin Lee","doi":"10.1109/MMSE.2003.1254456","DOIUrl":null,"url":null,"abstract":"An efficient local similarity search engine is developed by exploiting some techniques of data mining. All frequent patterns in the database are retrieved and recorded in a one-time preprocessing process. Then a query sequence is checked to see whether any pattern from the preprocessing stage is matched to the query. Two regions coming from the query and a database sequence that both match a pattern form a possible seed for local similarity. Finally, we extend and score each such seed region pair to see whether there really exists local similarity with a score high enough for reporting. For computational efficiency, a novel clustering approach is proposed and integrated into the proposed system, which is based on the local similarity search engine - the DELPHI system proposed by IBM. Extensive experiments are demonstrated to show the performance of our system.","PeriodicalId":322357,"journal":{"name":"Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSE.2003.1254456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
An efficient local similarity search engine is developed by exploiting some techniques of data mining. All frequent patterns in the database are retrieved and recorded in a one-time preprocessing process. Then a query sequence is checked to see whether any pattern from the preprocessing stage is matched to the query. Two regions coming from the query and a database sequence that both match a pattern form a possible seed for local similarity. Finally, we extend and score each such seed region pair to see whether there really exists local similarity with a score high enough for reporting. For computational efficiency, a novel clustering approach is proposed and integrated into the proposed system, which is based on the local similarity search engine - the DELPHI system proposed by IBM. Extensive experiments are demonstrated to show the performance of our system.