An Interpretable Deep Bayesian Model for Facial Micro-Expression Recognition

Chenfeng Wang, Xiaoguang Gao, X. Li
{"title":"An Interpretable Deep Bayesian Model for Facial Micro-Expression Recognition","authors":"Chenfeng Wang, Xiaoguang Gao, X. Li","doi":"10.1109/ICCRE57112.2023.10155596","DOIUrl":null,"url":null,"abstract":"The Bayesian network is a powerful model for uncertain causal inference, but is limited to handle numerical data. In order to apply its excellent bidirectional inference ability to the image domain, this paper proposes an interpretable deep Bayesian model, which is based on deep learning technology to conduct semantic segmentation of facial micro-expressions and then extract features to construct the feature Bayesian network to analyze and infer causal relationships. Experiments show that the proposed model enables Bayesian networks to analyze image information, and enhances the interpretability of micro-expression recognition compared with deep learning models.","PeriodicalId":285164,"journal":{"name":"2023 8th International Conference on Control and Robotics Engineering (ICCRE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Control and Robotics Engineering (ICCRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRE57112.2023.10155596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Bayesian network is a powerful model for uncertain causal inference, but is limited to handle numerical data. In order to apply its excellent bidirectional inference ability to the image domain, this paper proposes an interpretable deep Bayesian model, which is based on deep learning technology to conduct semantic segmentation of facial micro-expressions and then extract features to construct the feature Bayesian network to analyze and infer causal relationships. Experiments show that the proposed model enables Bayesian networks to analyze image information, and enhances the interpretability of micro-expression recognition compared with deep learning models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面部微表情识别的可解释深度贝叶斯模型
贝叶斯网络是一种强大的不确定因果推理模型,但仅限于处理数值数据。为了将其优秀的双向推理能力应用到图像领域,本文提出了一种可解释的深度贝叶斯模型,该模型基于深度学习技术对面部微表情进行语义分割,然后提取特征构建特征贝叶斯网络,分析推断因果关系。实验表明,该模型使贝叶斯网络能够分析图像信息,并且与深度学习模型相比,增强了微表情识别的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Particle Filtering Strategy for Terrain Aided Navigation Based on MBES Information An EMG-Based Teleoperation System with Small Hand Based on a Dual-Arm Task Model Statics and Dynamics Simulation Analysis of the Industrial Robot Arm Structure Based on the Generative Design Toxicity Detection Using State of the Art Natural Language Methodologies Better Multi-step Time Series Prediction Using Sparse and Deep Echo State Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1