Generalized mixed‐effects random forest: A flexible approach to predict university student dropout

Massimo Pellagatti, Chiara Masci, F. Ieva, A. Paganoni
{"title":"Generalized mixed‐effects random forest: A flexible approach to predict university student dropout","authors":"Massimo Pellagatti, Chiara Masci, F. Ieva, A. Paganoni","doi":"10.1002/sam.11505","DOIUrl":null,"url":null,"abstract":"We propose a new statistical method, called generalized mixed‐effects random forest (GMERF), that extends the use of random forest to the analysis of hierarchical data, for any type of response variable in the exponential family. The method maintains the flexibility and the ability of modeling complex patterns within the data, typical of tree‐based ensemble methods, and it can handle both continuous and discrete covariates. At the same time, GMERF takes into account the nested structure of hierarchical data, modeling the dependence structure that exists at the highest level of the hierarchy and allowing statistical inference on this structure. In the case study, we apply GMERF to Higher Education data to analyze the university student dropout phenomenon. We predict engineering student dropout probability by means of student‐level information and considering the degree program students are enrolled in as grouping factor.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We propose a new statistical method, called generalized mixed‐effects random forest (GMERF), that extends the use of random forest to the analysis of hierarchical data, for any type of response variable in the exponential family. The method maintains the flexibility and the ability of modeling complex patterns within the data, typical of tree‐based ensemble methods, and it can handle both continuous and discrete covariates. At the same time, GMERF takes into account the nested structure of hierarchical data, modeling the dependence structure that exists at the highest level of the hierarchy and allowing statistical inference on this structure. In the case study, we apply GMERF to Higher Education data to analyze the university student dropout phenomenon. We predict engineering student dropout probability by means of student‐level information and considering the degree program students are enrolled in as grouping factor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义混合效应随机森林:一种预测大学生辍学的灵活方法
我们提出了一种新的统计方法,称为广义混合效应随机森林(GMERF),它将随机森林的使用扩展到对指数族中任何类型的响应变量的分层数据分析。该方法保持了数据中复杂模式建模的灵活性和能力,典型的基于树的集成方法,它可以处理连续和离散协变量。同时,GMERF考虑了层次数据的嵌套结构,对存在于层次结构最高层的依赖结构进行建模,并允许对该结构进行统计推断。在案例研究中,我们将GMERF应用于高等教育数据,分析大学生辍学现象。我们通过学生层面的信息来预测工程专业学生的退学概率,并将学生所就读的学位课程作为分组因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1