A survey on supervised learning by evolving multi-layer perceptrons

A. Ribert, E. Stocker, Y. Lecourtier, A. Ennaji
{"title":"A survey on supervised learning by evolving multi-layer perceptrons","authors":"A. Ribert, E. Stocker, Y. Lecourtier, A. Ennaji","doi":"10.1109/ICCIMA.1999.798514","DOIUrl":null,"url":null,"abstract":"This paper provides a guide to evolving-architecture neural networks for a beginner in multi-layer perceptrons. All the quoted methods aim at automatically fitting a neural network architecture to a particular classification task. Several kinds of evolving architectures are exposed. Some neural networks start small and become bigger and bigger during the learning, whereas others start over-dimensioned and undergo pruning. A last network category uses both methods alternately.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper provides a guide to evolving-architecture neural networks for a beginner in multi-layer perceptrons. All the quoted methods aim at automatically fitting a neural network architecture to a particular classification task. Several kinds of evolving architectures are exposed. Some neural networks start small and become bigger and bigger during the learning, whereas others start over-dimensioned and undergo pruning. A last network category uses both methods alternately.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于进化多层感知器的监督学习研究综述
本文为多层感知器的初学者提供了进化结构神经网络的指南。所有引用的方法都旨在自动将神经网络结构拟合到特定的分类任务中。揭示了几种不断发展的体系结构。一些神经网络开始时很小,在学习过程中变得越来越大,而另一些神经网络开始时维数过高,并经历修剪。最后一个网络类别交替使用这两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modular rough fuzzy MLP: evolutionary design Indian language multimedia and information retrieval An image understanding system for various images based on multi-agent architecture End-to-end simulation of VBR traffic over ATM networks using CIPP network traffic model Fuzzy approach to recognize handwritten Tamil characters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1