Current status and future prospects of electric generators using electroactive polymer artificial muscle

S. Chiba, M. Waki, K. Masuda, T. Ikoma
{"title":"Current status and future prospects of electric generators using electroactive polymer artificial muscle","authors":"S. Chiba, M. Waki, K. Masuda, T. Ikoma","doi":"10.1109/OCEANSSYD.2010.5603972","DOIUrl":null,"url":null,"abstract":"The type of electroactive polymer known as dielectric elastomers has shown considerable promise for harvesting energy from environmental sources such as ocean waves, wind, water currents, human motion, etc. The high energy density and conversion efficiency of dielectric elastomers can allow for very simple and robust “DIRECT DRIVE” generators. Various types of energy harvesting generators based on dielectric elastomers have been tested. For example, buoy-mounted generators that harvest the energy of ocean waves were tested at sea for two weeks. Each generator uses a proof-mass to provide the mechanical forces that stretch and contract the dielectric elastomer generator. Those generators operated successfully during the sea trials. The buoy-mounted generators will be scaled up to produce larger amounts of power. The use of significantly larger amounts of dielectric elastomer material to produce generator modules with outputs in the MEGAWATT at range is being investigated for application to ocean wave power systems.","PeriodicalId":129808,"journal":{"name":"OCEANS'10 IEEE SYDNEY","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS'10 IEEE SYDNEY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSSYD.2010.5603972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The type of electroactive polymer known as dielectric elastomers has shown considerable promise for harvesting energy from environmental sources such as ocean waves, wind, water currents, human motion, etc. The high energy density and conversion efficiency of dielectric elastomers can allow for very simple and robust “DIRECT DRIVE” generators. Various types of energy harvesting generators based on dielectric elastomers have been tested. For example, buoy-mounted generators that harvest the energy of ocean waves were tested at sea for two weeks. Each generator uses a proof-mass to provide the mechanical forces that stretch and contract the dielectric elastomer generator. Those generators operated successfully during the sea trials. The buoy-mounted generators will be scaled up to produce larger amounts of power. The use of significantly larger amounts of dielectric elastomer material to produce generator modules with outputs in the MEGAWATT at range is being investigated for application to ocean wave power systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电活性聚合物人造肌肉发电机的现状与展望
这种电活性聚合物被称为介电弹性体,它在从海浪、风、水流、人体运动等环境来源中收集能量方面显示出相当大的前景。电介质弹性体的高能量密度和转换效率可以允许非常简单和强大的“直接驱动”发电机。基于介电弹性体的各种类型的能量收集发电机已经进行了测试。例如,安装在浮标上的发电机收集海浪的能量,在海上进行了两周的测试。每个发电机都使用一个证明质量来提供拉伸和收缩介电弹性体发电机的机械力。这些发电机在海试期间运行顺利。安装在浮标上的发电机将按比例扩大,以产生更大的电力。目前正在研究使用大量的介电弹性体材料来生产输出功率在兆瓦范围内的发电机模块,以应用于海洋波浪能系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust discrete Fourier transform based receivers for continuous phase modulation Near-field beamforming for a Multi-Beam Echo Sounder: Approximation and error analysis Long-term real-time monitoring of free-ranging Bottlenose dolphins (Tursiops truncatus) in an aquarium using 5-hydrophone array system Proven high efficiency anchor for harsh cyclonic environments Rugosity, slope and aspect from bathymetric stereo image reconstructions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1