Indicating if water is safe for human consumption using an enhanced machine learning approach

M. Nachaoui, S. Lyaqini, Marouane Chaouch
{"title":"Indicating if water is safe for human consumption using an enhanced machine learning approach","authors":"M. Nachaoui, S. Lyaqini, Marouane Chaouch","doi":"10.19139/soic-2310-5070-1703","DOIUrl":null,"url":null,"abstract":"Predicting water quality accurately is critically important in real-life water resource management. This work proposes an approach based on supervised machine learning to predict water quality. Motivated, by the success of the non-smooth loss function for supervised learning problems [22], we reformulate the learning problem as a regularized optimization problem whose fidelity term is the hinge loss function and the hypothesis space is a polynomial approximation. To deal with the non-differentiability of the loss function, a special smoothing function is proposed. Then, the obtained optimization problem is solved by an improved conjugate gradient algorithm. Finally,some experiments results are presented.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Predicting water quality accurately is critically important in real-life water resource management. This work proposes an approach based on supervised machine learning to predict water quality. Motivated, by the success of the non-smooth loss function for supervised learning problems [22], we reformulate the learning problem as a regularized optimization problem whose fidelity term is the hinge loss function and the hypothesis space is a polynomial approximation. To deal with the non-differentiability of the loss function, a special smoothing function is proposed. Then, the obtained optimization problem is solved by an improved conjugate gradient algorithm. Finally,some experiments results are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用增强的机器学习方法指示水是否可供人类安全饮用
准确预测水质对现实生活中的水资源管理至关重要。这项工作提出了一种基于监督机器学习的方法来预测水质。受非光滑损失函数在监督学习问题[22]中的成功应用的启发,我们将学习问题重新表述为一个正则化优化问题,其保真度项为铰链损失函数,假设空间为多项式近似。为了处理损失函数的不可微性,提出了一种特殊的平滑函数。然后,用改进的共轭梯度算法求解得到的优化问题。最后给出了一些实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1