Leveraging eye-gaze and time-series features to predict user interests and build a recommendation model for visual analysis

Nelson Silva, T. Schreck, Eduardo Veas, V. Sabol, E. Eggeling, D. Fellner
{"title":"Leveraging eye-gaze and time-series features to predict user interests and build a recommendation model for visual analysis","authors":"Nelson Silva, T. Schreck, Eduardo Veas, V. Sabol, E. Eggeling, D. Fellner","doi":"10.1145/3204493.3204546","DOIUrl":null,"url":null,"abstract":"We developed a new concept to improve the efficiency of visual analysis through visual recommendations. It uses a novel eye-gaze based recommendation model that aids users in identifying interesting time-series patterns. Our model combines time-series features and eye-gaze interests, captured via an eye-tracker. Mouse selections are also considered. The system provides an overlay visualization with recommended patterns, and an eye-history graph, that supports the users in the data exploration process. We conducted an experiment with 5 tasks where 30 participants explored sensor data of a wind turbine. This work presents results on pre-attentive features, and discusses the precision/recall of our model in comparison to final selections made by users. Our model helps users to efficiently identify interesting time-series patterns.","PeriodicalId":237808,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204493.3204546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We developed a new concept to improve the efficiency of visual analysis through visual recommendations. It uses a novel eye-gaze based recommendation model that aids users in identifying interesting time-series patterns. Our model combines time-series features and eye-gaze interests, captured via an eye-tracker. Mouse selections are also considered. The system provides an overlay visualization with recommended patterns, and an eye-history graph, that supports the users in the data exploration process. We conducted an experiment with 5 tasks where 30 participants explored sensor data of a wind turbine. This work presents results on pre-attentive features, and discusses the precision/recall of our model in comparison to final selections made by users. Our model helps users to efficiently identify interesting time-series patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用眼球注视和时间序列特征来预测用户兴趣,并构建用于视觉分析的推荐模型
我们开发了一个新的概念,通过视觉推荐来提高视觉分析的效率。它使用一种新颖的基于眼睛注视的推荐模型,帮助用户识别有趣的时间序列模式。我们的模型结合了时间序列特征和眼球注视兴趣,通过眼动仪捕获。还考虑了鼠标选择。该系统提供了推荐模式的叠加可视化和眼历史图,支持用户在数据探索过程中。我们进行了一个实验,有5个任务,30名参与者探索风力涡轮机的传感器数据。这项工作展示了预注意特征的结果,并讨论了与用户最终选择相比,我们模型的精度/召回率。我们的模型可以帮助用户有效地识别有趣的时间序列模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating gender difference on algorithmic problems using eye-tracker Eyemic Gaze patterns during remote presentations while listening and speaking An investigation of the effects of n-gram length in scanpath analysis for eye-tracking research Towards concise gaze sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1