Detecting similarities and differences in images using the PFF and LGG approaches

N. Bourbakis
{"title":"Detecting similarities and differences in images using the PFF and LGG approaches","authors":"N. Bourbakis","doi":"10.1109/TAI.2002.1180825","DOIUrl":null,"url":null,"abstract":"This paper presents two methods for comparison of images and evaluation of visibility of artifacts due to hidden information, changes or noise. The first method is based on pixel flow functions (PFF) able to detect changes in images by projecting the pixel values vertically, horizontally and diagonally. These projections create \"functions\" related with the average values of pixels summarized horizontally, vertically and diagonally. These functions represent image signatures. The comparison of image signatures defines differences in images. The second method is based on a heuristic graph model, known as local-global graph (LGG), for evaluating visibility of modifications in digital images. The LGG is based on segmentation and comparing the segments while thresholding the differences in their attributes. The methods have been implemented in C++ and their performance is presented.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents two methods for comparison of images and evaluation of visibility of artifacts due to hidden information, changes or noise. The first method is based on pixel flow functions (PFF) able to detect changes in images by projecting the pixel values vertically, horizontally and diagonally. These projections create "functions" related with the average values of pixels summarized horizontally, vertically and diagonally. These functions represent image signatures. The comparison of image signatures defines differences in images. The second method is based on a heuristic graph model, known as local-global graph (LGG), for evaluating visibility of modifications in digital images. The LGG is based on segmentation and comparing the segments while thresholding the differences in their attributes. The methods have been implemented in C++ and their performance is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用PFF和LGG方法检测图像的相似性和差异性
本文提出了两种用于图像比较和评估由于隐藏信息、变化或噪声而产生的伪像的可见性的方法。第一种方法是基于像素流函数(PFF),能够通过垂直、水平和对角线投影像素值来检测图像的变化。这些投影创建了与水平、垂直和对角线汇总的像素平均值相关的“函数”。这些函数表示图像签名。图像签名的比较定义了图像之间的差异。第二种方法是基于启发式图模型,称为局部全局图(LGG),用于评估数字图像中修改的可见性。LGG基于分割和比较片段,同时对其属性的差异设置阈值。在c++中实现了这些方法,并给出了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning for software engineering: case studies in software reuse Active tracking and cloning of facial expressions using spatio-temporal information Fusing cooperative technical-specification knowledge components Ontology construction for information selection An intelligent brokering system to support multi-agent Web-based 4/sup th/-party logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1