Nicholas Diana, Michael Eagle, John C. Stamper, Shuchi Grover, M. Bienkowski, Satabdi Basu
{"title":"Data-driven generation of rubric criteria from an educational programming environment","authors":"Nicholas Diana, Michael Eagle, John C. Stamper, Shuchi Grover, M. Bienkowski, Satabdi Basu","doi":"10.1145/3170358.3170399","DOIUrl":null,"url":null,"abstract":"We demonstrate that, by using a small set of hand-graded student work, we can automatically generate rubric criteria with a high degree of validity, and that a predictive model incorporating these rubric criteria is more accurate than a previously reported model. We present this method as one approach to addressing the often challenging problem of grading assignments in programming environments. A classic solution is creating unit-tests that the student-generated program must pass, but the rigid, structured nature of unit-tests is suboptimal for assessing the more open-ended assignments students encounter in introductory programming environments like Alice. Furthermore, the creation of unit-tests requires predicting the various ways a student might correctly solve a problem - a challenging and time-intensive process. The current study proposes an alternative, semi-automated method for generating rubric criteria using low-level data from the Alice programming environment.","PeriodicalId":437369,"journal":{"name":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3170358.3170399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We demonstrate that, by using a small set of hand-graded student work, we can automatically generate rubric criteria with a high degree of validity, and that a predictive model incorporating these rubric criteria is more accurate than a previously reported model. We present this method as one approach to addressing the often challenging problem of grading assignments in programming environments. A classic solution is creating unit-tests that the student-generated program must pass, but the rigid, structured nature of unit-tests is suboptimal for assessing the more open-ended assignments students encounter in introductory programming environments like Alice. Furthermore, the creation of unit-tests requires predicting the various ways a student might correctly solve a problem - a challenging and time-intensive process. The current study proposes an alternative, semi-automated method for generating rubric criteria using low-level data from the Alice programming environment.