Forming and Properties of Friction Stir Welding Process for DissimilarMg Alloy

T. Li, Zhenshan Wang
{"title":"Forming and Properties of Friction Stir Welding Process for DissimilarMg Alloy","authors":"T. Li, Zhenshan Wang","doi":"10.2174/1874155X01509010859","DOIUrl":null,"url":null,"abstract":"For hot extrusions of magnesium alloy sheets, Dissimilar AZ80 and AZ31 were used, in which AZ80 was placed on advancing side and AZ31 on retreating side, using friction stir butt welding with different process parameters. Some defect-free welded joints with good weld surfaces could be obtained with some suitable welding conditions. The maximum tensile strength of welded joint which is 225.5 MPa can reach 98% that of the AZ31 base material. Influence of process parameters on defects, weld shaping and mechanical property were discussed systematically. And the microstructure of different zones was compared. The fracture of the welded joints takes place at the junction of mechanical heat affected zone and nugget zone in AZ31 magnesium alloy set retreating side, since existing difference in metallographic structure of alloy diversely suffered by heat, pressure and depositing impurities. Fracture initiation site may be the P line defect which should be eliminated, and the P line defect formation was analyzed.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Mechanical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874155X01509010859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For hot extrusions of magnesium alloy sheets, Dissimilar AZ80 and AZ31 were used, in which AZ80 was placed on advancing side and AZ31 on retreating side, using friction stir butt welding with different process parameters. Some defect-free welded joints with good weld surfaces could be obtained with some suitable welding conditions. The maximum tensile strength of welded joint which is 225.5 MPa can reach 98% that of the AZ31 base material. Influence of process parameters on defects, weld shaping and mechanical property were discussed systematically. And the microstructure of different zones was compared. The fracture of the welded joints takes place at the junction of mechanical heat affected zone and nugget zone in AZ31 magnesium alloy set retreating side, since existing difference in metallographic structure of alloy diversely suffered by heat, pressure and depositing impurities. Fracture initiation site may be the P line defect which should be eliminated, and the P line defect formation was analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异种合金搅拌摩擦焊接成形及性能研究
在镁合金板材热挤压试验中,采用不同工艺参数的搅拌摩擦对接焊接,将AZ80置于前进侧,AZ31置于后退侧。在适当的焊接条件下,可以获得一些焊缝表面良好的无缺陷焊接接头。焊接接头的最大抗拉强度为225.5 MPa,达到AZ31母材的98%。系统地讨论了工艺参数对缺陷、焊缝成形和力学性能的影响。并对不同区域的微观结构进行了比较。焊接接头断裂发生在AZ31镁合金集后侧机械热影响区和熔核区交界处,这是由于合金存在不同的金相组织,受热、压力和沉积杂质的影响程度不同。断口起爆部位可能是应消除的P线缺陷,并对P线缺陷的形成进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wear and Corrosion Resistance of Hardened Fe-Al-Mn Grinding Ball Revised Lewis Bending Stress Capacity Model The Efficient and Tentative Model for Extenics Replications of the Moveable Robots Controllable Magnetoactive Polymer Conduit Experimental Studying of the Variations of Surface Roughness and Dimensional Accuracy in Dry Hard Turning Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1