Mining the energy consumption data of industrial systems to identify and characterize energy flexibility capabilities

Alejandro Tristán Jiménez, C. Kaymakci, A. Sauer
{"title":"Mining the energy consumption data of industrial systems to identify and characterize energy flexibility capabilities","authors":"Alejandro Tristán Jiménez, C. Kaymakci, A. Sauer","doi":"10.1109/SmartGridComm51999.2021.9632330","DOIUrl":null,"url":null,"abstract":"Industrial energy flexibility can play a pivotal supporting role in the transition towards renewable energy sources. Nonetheless, to harness the vast potential of industrial energy flexibility operation-friendly energy flexibility measures need to be identified and characterized. This work presents a step by step approach to mine historical energy consumption data of an industrial system using the k-means algorithm with support of the average silhouette score method to establish the system's typical operation profiles. These profiles can then be used not only to identify specific energy flexibility measures but their energy flexibility potential among other characterization parameters. The paper presents two representative use case examples and concludes by enumerating the benefits and providing an outlook of improvement opportunities for the developed approach.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Industrial energy flexibility can play a pivotal supporting role in the transition towards renewable energy sources. Nonetheless, to harness the vast potential of industrial energy flexibility operation-friendly energy flexibility measures need to be identified and characterized. This work presents a step by step approach to mine historical energy consumption data of an industrial system using the k-means algorithm with support of the average silhouette score method to establish the system's typical operation profiles. These profiles can then be used not only to identify specific energy flexibility measures but their energy flexibility potential among other characterization parameters. The paper presents two representative use case examples and concludes by enumerating the benefits and providing an outlook of improvement opportunities for the developed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘工业系统的能耗数据,以识别和表征能源灵活性能力
工业能源灵活性可以在向可再生能源过渡的过程中发挥关键的支持作用。然而,为了利用工业能源灵活性的巨大潜力,需要确定和确定有利于运营的能源灵活性措施。本文提出了一种利用k-means算法逐步挖掘工业系统历史能耗数据的方法,并支持平均轮廓评分法来建立系统的典型运行曲线。然后,这些剖面不仅可以用于确定特定的能量柔韧性措施,还可以用于确定其他表征参数中的能量柔韧性潜力。本文提出了两个有代表性的用例示例,并通过列举益处和提供已开发方法的改进机会前景来进行总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1