Image Decomposing by Discrete Wavelet Transform in the Image Retrieval Systems

M. Kostov, Elena Kotevska, M. Atanasovski, Gordana Janevska
{"title":"Image Decomposing by Discrete Wavelet Transform in the Image Retrieval Systems","authors":"M. Kostov, Elena Kotevska, M. Atanasovski, Gordana Janevska","doi":"10.6025/jmpt/2021/12/1/9-17","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a CBIR method that uses wavelet transformation. The property of wavelets to localize both time and frequency makes them very suitable for analysis of nonstationary signals [1]. They are an excellent tool for feature extraction, signal and image compression, edge detection and compression. The reason of using the wavelet transform is that the basis functions used in wavelet transforms are locally supported; they are nonzero only over part of the domain represented. Hence, adequately chosen wavelet basis groups the coefficients in two groups – one with a few coefficients with high SNR, and other with a lot of coefficients with low SNR. Using the wavelet coefficients of images we compute a pseudo-hash information that is later used for fast querying the database. This approach for searching an image database in which a query is expressed as a low-resolution image is known as query by content [2]-[5].","PeriodicalId":226712,"journal":{"name":"J. Multim. Process. Technol.","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Multim. Process. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6025/jmpt/2021/12/1/9-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a CBIR method that uses wavelet transformation. The property of wavelets to localize both time and frequency makes them very suitable for analysis of nonstationary signals [1]. They are an excellent tool for feature extraction, signal and image compression, edge detection and compression. The reason of using the wavelet transform is that the basis functions used in wavelet transforms are locally supported; they are nonzero only over part of the domain represented. Hence, adequately chosen wavelet basis groups the coefficients in two groups – one with a few coefficients with high SNR, and other with a lot of coefficients with low SNR. Using the wavelet coefficients of images we compute a pseudo-hash information that is later used for fast querying the database. This approach for searching an image database in which a query is expressed as a low-resolution image is known as query by content [2]-[5].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像检索系统中的离散小波变换图像分解
本文提出了一种基于小波变换的CBIR方法。小波具有时域和频域的特性,使其非常适合于分析非平稳信号[1]。它们是特征提取、信号和图像压缩、边缘检测和压缩的优秀工具。使用小波变换的原因是小波变换中使用的基函数是局部支持的;它们只在表示的部分定义域上是非零的。因此,适当选择小波基将系数分为两组,一组具有少量高信噪比系数,另一组具有大量低信噪比系数。使用图像的小波系数,我们计算伪哈希信息,该信息稍后用于快速查询数据库。这种将查询表示为低分辨率图像的图像数据库搜索方法称为按内容查询[2]-[5]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Noise Image Enhancement Method Based on Genetic Algorithm in Nonsubsampled Contourlet Domain Face Perception Methodologies with Principal Component Methodology Algorithm Computer Simulations as a Complementary Educational Tool in Practical Work: Application of Monte-Carlo Simulation to Estimate the Kinetic Parameters for Chemical Reactions Colors, Contrasts and Typography in the Design of ecourses The Effects of the Multimedia, Modality, and Redundancy Principles in a Computer- Based Environment on Adult Learners
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1