The problems of creating a propulsion system of a new generation supersonic passenger aircraft (review)

A. D. Alendar, A. Lanshin, A. Evstigneev, K. Yakubovsky, M. Siluyanova
{"title":"The problems of creating a propulsion system of a new generation supersonic passenger aircraft (review)","authors":"A. D. Alendar, A. Lanshin, A. Evstigneev, K. Yakubovsky, M. Siluyanova","doi":"10.18287/2541-7533-2023-22-1-7-28","DOIUrl":null,"url":null,"abstract":"The problems of creating a propulsion system for a new generation supersonic passenger aircraft are considered on the basis of a review of the work on the supersonic transport being carried out in the world. It is shown that the desire to achieve high flight performance and commercial effectiveness of a supersonic passenger aircraft while meeting up-to-date environmental requirements leads to contradictory technical solutions regarding the propulsion system: the location and number of engines, the scheme of the air intake and nozzle, the choice of the scheme and design parameters of the engine, the use of new high-temperature materials in the engine hot section, etc. The features of the operating conditions of the engine components of a supersonic passenger aircraft in comparison with the engines of up-to-date subsonic civil aviation aircraft and supersonic military aircraft are indicated. The calculated estimates of the influence of various technical solutions on the parameters of the supersonic passenger aircraft engine are given. Due to the complexity and multi-criterion nature of the task of creating a supersonic passenger aircraft propulsion system, its solution requires an integrated approach based on close cooperation of specialists in airframe aerodynamics, engine, etc.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7533-2023-22-1-7-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problems of creating a propulsion system for a new generation supersonic passenger aircraft are considered on the basis of a review of the work on the supersonic transport being carried out in the world. It is shown that the desire to achieve high flight performance and commercial effectiveness of a supersonic passenger aircraft while meeting up-to-date environmental requirements leads to contradictory technical solutions regarding the propulsion system: the location and number of engines, the scheme of the air intake and nozzle, the choice of the scheme and design parameters of the engine, the use of new high-temperature materials in the engine hot section, etc. The features of the operating conditions of the engine components of a supersonic passenger aircraft in comparison with the engines of up-to-date subsonic civil aviation aircraft and supersonic military aircraft are indicated. The calculated estimates of the influence of various technical solutions on the parameters of the supersonic passenger aircraft engine are given. Due to the complexity and multi-criterion nature of the task of creating a supersonic passenger aircraft propulsion system, its solution requires an integrated approach based on close cooperation of specialists in airframe aerodynamics, engine, etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新一代超音速客机推进系统研制中的问题(综述)
在回顾国内外超声速运输机研制工作的基础上,提出了研制新一代超声速客机推进系统的问题。研究表明,在满足最新环境要求的同时,为了实现超音速客机的高飞行性能和商业效益,在推进系统的技术解决方案上存在矛盾:发动机的位置和数量、进气和喷管的方案、发动机方案和设计参数的选择、发动机热段使用新型高温材料等。指出了超声速客机发动机部件的工作状态与现代亚音速民航飞机和超声速军用飞机发动机的比较特点。给出了各种技术方案对超音速客机发动机参数影响的计算估计。由于制造超音速客机推进系统任务的复杂性和多准则性,其解决方案需要基于机身空气动力学、发动机等专家密切合作的综合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental analysis of instability and self-oscillations in an electrohydraulic servo drive Reliability-oriented design of PCM thermodimensionally stable space structures Method of first-approximation calculation of take-off weight of a light aircraft with a hybrid propulsion system The relevance of introducing a requirements management system in the production process of the aircraft engine construction industry Forecasting the parameters of performance monitoring of complex technical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1