Reduced-Dimension DOA Estimation Based on MUSIC Algorithm in L-Shaped Array

Junliang Yang, Hu He, Shumin Wang
{"title":"Reduced-Dimension DOA Estimation Based on MUSIC Algorithm in L-Shaped Array","authors":"Junliang Yang, Hu He, Shumin Wang","doi":"10.1145/3573942.3574113","DOIUrl":null,"url":null,"abstract":"According to the heavy computation and high cost of two-dimensional (2D) multiple signal classification (MUSIC) to achieve 2D direction of arrival (DOA) estimation in various complex arrays, this paper proposes a reduced-dimensional (RD) estimation algorithm based on L-shaped uniform array without the need of 2D spectral peak search and secondary optimization. This algorithm makes full use of the structural characteristics of L-shaped array, decomposes the L-shaped uniform array into two uniform linear arrays, and estimates the angle between the source and the X-axis and Y-axis by one-dimensional (1D) search respectively, then obtains the 2D-DOA estimation according to the geometric relationship and uses the maximum likelihood method for angle matching. In this algorithm, the time-consuming 2D search is transformed into 1D search, which greatly reduces the computational complexity. In order to further reduce the complexity and improve the estimation accuracy, the root-finding method can be used instead of one-dimensional search. The simulation results show that the proposed algorithm has higher DOA estimation performance as well as faster operation speed.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3574113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the heavy computation and high cost of two-dimensional (2D) multiple signal classification (MUSIC) to achieve 2D direction of arrival (DOA) estimation in various complex arrays, this paper proposes a reduced-dimensional (RD) estimation algorithm based on L-shaped uniform array without the need of 2D spectral peak search and secondary optimization. This algorithm makes full use of the structural characteristics of L-shaped array, decomposes the L-shaped uniform array into two uniform linear arrays, and estimates the angle between the source and the X-axis and Y-axis by one-dimensional (1D) search respectively, then obtains the 2D-DOA estimation according to the geometric relationship and uses the maximum likelihood method for angle matching. In this algorithm, the time-consuming 2D search is transformed into 1D search, which greatly reduces the computational complexity. In order to further reduce the complexity and improve the estimation accuracy, the root-finding method can be used instead of one-dimensional search. The simulation results show that the proposed algorithm has higher DOA estimation performance as well as faster operation speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MUSIC算法的l形阵列降维方位估计
针对二维(2D)多信号分类(MUSIC)在各种复杂阵列中实现二维到达方向(DOA)估计的计算量大、成本高的问题,本文提出了一种基于l形均匀阵列的降维(RD)估计算法,无需二维谱峰搜索和二次优化。该算法充分利用l形阵的结构特点,将l形均匀阵分解为两个均匀线性阵,分别通过一维搜索估计光源与x轴和y轴的夹角,然后根据几何关系得到2D-DOA估计,并采用极大似然法进行角度匹配。该算法将耗时的二维搜索转化为一维搜索,大大降低了计算复杂度。为了进一步降低复杂性和提高估计精度,可以使用寻根法代替一维搜索。仿真结果表明,该算法具有较高的DOA估计性能和较快的运算速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Lightweight Method for Object Detection Incremental Encoding Transformer Incorporating Common-sense Awareness for Conversational Sentiment Recognition Non-intrusive Automatic 3D Gaze Ground-truth System Fiber Optic Gyroscope Random Error Modeling Based on Improved Kalman Filtering Channel Modeling of Spaceborne Multiwavelet Packet OFDM System Based on CWGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1