Effects of Decarburization in Aircraft Components

Jivan B. Shah
{"title":"Effects of Decarburization in Aircraft Components","authors":"Jivan B. Shah","doi":"10.31399/asm.fach.aero.c9001553","DOIUrl":null,"url":null,"abstract":"\n A connecting rod from a failed engine ruptured in fatigue without evidence of excessive stresses, detonation, overheating, or oil starvation. The origin of the fatigue failure was completely mutilated but decarburization was observed. Significant amounts of decarburization (0.010 to 0.015 in.) were found also in other forgings, such as exhaust rocker arms, main rotor drag brace clevises, bolts of carriage diagonal struts, and spring legs of main landing gears. The failure mode was low-stress, high-cycle fatigue involving tension and bending loads. The main cause was a manufacturing deficiency. The usual way to eliminate decarburization is to machine off the soft skin or employ better quality control when making them. Many aircraft manufacturers employ forged parts with machined surfaces or with shot-peened as-forged surfaces without excessive decarburization.","PeriodicalId":326464,"journal":{"name":"ASM Failure Analysis Case Histories: Air and Spacecraft","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Air and Spacecraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.aero.c9001553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A connecting rod from a failed engine ruptured in fatigue without evidence of excessive stresses, detonation, overheating, or oil starvation. The origin of the fatigue failure was completely mutilated but decarburization was observed. Significant amounts of decarburization (0.010 to 0.015 in.) were found also in other forgings, such as exhaust rocker arms, main rotor drag brace clevises, bolts of carriage diagonal struts, and spring legs of main landing gears. The failure mode was low-stress, high-cycle fatigue involving tension and bending loads. The main cause was a manufacturing deficiency. The usual way to eliminate decarburization is to machine off the soft skin or employ better quality control when making them. Many aircraft manufacturers employ forged parts with machined surfaces or with shot-peened as-forged surfaces without excessive decarburization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
飞机部件脱碳的影响
故障发动机的连杆因疲劳破裂,但没有过度应力、爆炸、过热或缺油的迹象。疲劳破坏的源头完全被破坏,但出现了脱碳现象。在其他锻件中也发现了大量的脱碳(0.010至0.015英寸),例如排气摇臂,主转子阻力支撑裂缝,飞机对角支柱的螺栓和主起落架的弹簧腿。破坏模式为低应力、高周疲劳,包括拉伸和弯曲载荷。主要原因是制造业的不足。通常消除脱碳的方法是用机器去除柔软的皮肤,或者在制作时采用更好的质量控制。许多飞机制造商采用机加工表面或喷丸表面的锻造零件,而没有过度脱碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Premature Failure of a Turbine Blade by Thermal Fatigue Fracture Stress-Corrosion Cracking of a T-Bolt Failure of an External Tank Pressure/Vent Valve Corrosion Fatigue of Aircraft Nose Wheels Failure of a Bearing for a Jet Engine Because of Misalignment Between the Bearing and a Shaft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1