Optimization paper production through digitalization by developing an assistance system for machine operators including quality forecast: a concept

Moritz Schroth, Felix Hake, Konstantin Merker, Alexander Becher, Tilman Klaeger, Robin Huesmann, Detlef Eichhorn, Lukas Oehm
{"title":"Optimization paper production through digitalization by developing an assistance system for machine operators including quality forecast: a concept","authors":"Moritz Schroth, Felix Hake, Konstantin Merker, Alexander Becher, Tilman Klaeger, Robin Huesmann, Detlef Eichhorn, Lukas Oehm","doi":"10.48550/arXiv.2206.11581","DOIUrl":null,"url":null,"abstract":"Nowadays cross-industry ranging challenges include the reduction of greenhouse gas emission and enabling a circular economy. However, the production of paper from waste paper is still a highly resource intensive task, especially in terms of energy consumption. While paper machines produce a lot of data, we have identified a lack of utilization of it and implement a concept using an operator assistance system and state-of-the-art machine learning techniques, e.g., classification, forecasting and alarm flood handling algorithms, to support daily operator tasks. Our main objective is to provide situation-specific knowledge to machine operators utilizing available data. We expect this will result in better adjusted parameters and therefore a lower footprint of the paper machines.","PeriodicalId":294332,"journal":{"name":"International Conference on Informatics for Environmental Protection","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Informatics for Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.11581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays cross-industry ranging challenges include the reduction of greenhouse gas emission and enabling a circular economy. However, the production of paper from waste paper is still a highly resource intensive task, especially in terms of energy consumption. While paper machines produce a lot of data, we have identified a lack of utilization of it and implement a concept using an operator assistance system and state-of-the-art machine learning techniques, e.g., classification, forecasting and alarm flood handling algorithms, to support daily operator tasks. Our main objective is to provide situation-specific knowledge to machine operators utilizing available data. We expect this will result in better adjusted parameters and therefore a lower footprint of the paper machines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过为机器操作员开发包括质量预测在内的辅助系统,通过数字化优化纸张生产
如今,跨行业的挑战包括减少温室气体排放和实现循环经济。然而,从废纸生产纸张仍然是一个高度资源密集型的任务,特别是在能源消耗方面。虽然造纸机产生大量数据,但我们已经确定缺乏对其的利用,并使用操作员辅助系统和最先进的机器学习技术(例如分类,预测和报警洪水处理算法)实现一个概念,以支持日常操作员任务。我们的主要目标是利用可用数据为机器操作员提供特定情况的知识。我们预计这将导致更好地调整参数,从而降低造纸机的占地面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization paper production through digitalization by developing an assistance system for machine operators including quality forecast: a concept Green ICT Research and Challenges Goal-Based Automation of Peer-to-Peer Electricity Trading Modelling Rebound Effects in System Dynamics Risk assessment methods of water supply system in terms of reliability and operation cost
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1