Decoding the Confidence Level of Subjects in Answering Multiple Choice Questions Using EEG Induced Capsule Network

Shirsha Bose, Sayantani Ghosh, A. Konar, A. Nagar
{"title":"Decoding the Confidence Level of Subjects in Answering Multiple Choice Questions Using EEG Induced Capsule Network","authors":"Shirsha Bose, Sayantani Ghosh, A. Konar, A. Nagar","doi":"10.1109/SSCI50451.2021.9659928","DOIUrl":null,"url":null,"abstract":"The paper introduces an innovative methodology for the automatic discrimination of multiple choice answers chosen by merit and random guess by analyzing the confidence level of examinees using an Electroencephalographic system. The acquired brain signals of the subjects participating in the experiment are first examined using the eLORETA software which portrays the active participation of the middle frontal gyrus and precuneus when a subject is fully confident regarding the choice of the correct answer. In the next phase, the signals are pre-processed and converted to spectrogram plots using Short Time Fourier Transform (STFT) which reveal the enhanced activation of theta and lower alpha bands when a subject attempts an answer with his/her merit. On the other hand, the afore-said frequency bands portray reduced activation when a subject tries to choose an answer by a mere guess. The acquired spectrogram plots are transferred to a novel Capsule network model that aids in categorizing the two degrees of confidence level: High and Low. The novelty in the design of the Capsule based classifier lies in the introduction of a depthwise separable convolution layer, a squeeze and excitation attention mechanism and a Sigmoid-Weighted Linear Unit (SiLU) based dynamic routing algorithm. The proposed classifier demonstrates promising results in categorizing the two classes of confidence level and also outperforms its conventional counterparts. Thus, the proposed scheme can be utilized to improve the quality of assessment in multiple choice based examinations.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper introduces an innovative methodology for the automatic discrimination of multiple choice answers chosen by merit and random guess by analyzing the confidence level of examinees using an Electroencephalographic system. The acquired brain signals of the subjects participating in the experiment are first examined using the eLORETA software which portrays the active participation of the middle frontal gyrus and precuneus when a subject is fully confident regarding the choice of the correct answer. In the next phase, the signals are pre-processed and converted to spectrogram plots using Short Time Fourier Transform (STFT) which reveal the enhanced activation of theta and lower alpha bands when a subject attempts an answer with his/her merit. On the other hand, the afore-said frequency bands portray reduced activation when a subject tries to choose an answer by a mere guess. The acquired spectrogram plots are transferred to a novel Capsule network model that aids in categorizing the two degrees of confidence level: High and Low. The novelty in the design of the Capsule based classifier lies in the introduction of a depthwise separable convolution layer, a squeeze and excitation attention mechanism and a Sigmoid-Weighted Linear Unit (SiLU) based dynamic routing algorithm. The proposed classifier demonstrates promising results in categorizing the two classes of confidence level and also outperforms its conventional counterparts. Thus, the proposed scheme can be utilized to improve the quality of assessment in multiple choice based examinations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用脑电图诱导胶囊网络解码被试回答多项选择题的信心水平
本文介绍了一种利用脑电图系统分析考生的置信度,实现择优和随机猜测选择题答案自动判别的创新方法。首先使用eLORETA软件对参与实验的受试者获得的脑信号进行检测,该软件描绘了当受试者对选择正确答案充满信心时,额叶中回和楔前叶的积极参与。在下一阶段,信号被预处理并使用短时傅立叶变换(STFT)转换成频谱图,当受试者试图用他/她的优点回答时,该频谱图显示了theta和较低alpha波段的增强激活。另一方面,当受试者试图通过猜测来选择答案时,上述频段显示的激活减少。获取的谱图图被转移到一个新的胶囊网络模型,该模型有助于对高和低两个置信水平进行分类。基于Capsule的分类器设计的新颖之处在于引入了深度可分卷积层、挤压和激励注意机制以及基于sigmoid加权线性单元(SiLU)的动态路由算法。所提出的分类器在分类两类置信水平方面表现出良好的结果,并且优于传统的同类分类器。因此,所提出的方案可用于提高多项选择考试的评估质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1