Convolutional Neural Network Based Antenna Beam Coefficient Generation for Planar Arrays

Glen King, M. A. Towfiq, A. Gurbuz, B. Cetiner
{"title":"Convolutional Neural Network Based Antenna Beam Coefficient Generation for Planar Arrays","authors":"Glen King, M. A. Towfiq, A. Gurbuz, B. Cetiner","doi":"10.1109/AP-S/USNC-URSI47032.2022.9886789","DOIUrl":null,"url":null,"abstract":"This work presents a novel design approach on optimizing the complex feeding coefficients of an antenna array to achieve a desired beam pattern. The approach uses a convolutional neural network which takes an image representation of a desired radiation pattern and generates the corresponding phase gradient over the array aperture. To demonstrate the performance of the approach, an 8×8 planar array has been used. The results show the potential for machine learning to optimize antenna parameters in more complicated antenna systems, where an efficient way of developing antenna pattern codebooks by using a trained neural network is used.","PeriodicalId":371560,"journal":{"name":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a novel design approach on optimizing the complex feeding coefficients of an antenna array to achieve a desired beam pattern. The approach uses a convolutional neural network which takes an image representation of a desired radiation pattern and generates the corresponding phase gradient over the array aperture. To demonstrate the performance of the approach, an 8×8 planar array has been used. The results show the potential for machine learning to optimize antenna parameters in more complicated antenna systems, where an efficient way of developing antenna pattern codebooks by using a trained neural network is used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的平面阵列天线波束系数生成
本文提出了一种新的设计方法来优化天线阵列的复杂馈电系数,以获得所需的波束方向图。该方法使用卷积神经网络,该网络采用所需辐射方向图的图像表示并在阵列孔径上生成相应的相位梯度。为了证明该方法的性能,使用了8×8平面阵列。结果表明机器学习在更复杂的天线系统中优化天线参数的潜力,其中使用训练有素的神经网络开发天线方向图码本的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Analytical Model for Multibeam Antenna Arrays in Conformal Structures A High-efficiency Polarization Conversion Cell for Generating Broadband Vortex Beams Design of a 5.8 GHz 1-bit Reconfigurable Slotted SIW Antenna Array with Four Elements An Antenna for 5G Communication: Mirrored Pair Array of Modified Half Microstrip Patches for Near Endfire Operation Simulation Analysis of a Broadband High-Gain Omnidirectional Printed Antenna for Mobile Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1