Ozgun Y. Bursalioglu, Maria Fresia, G. Caire, H. Poor
{"title":"Joint Source-Channel Coding at the Application Layer","authors":"Ozgun Y. Bursalioglu, Maria Fresia, G. Caire, H. Poor","doi":"10.1109/DCC.2009.10","DOIUrl":null,"url":null,"abstract":"The multicasting of an independent and identically distributed Gaussian source over a binary erasure broadcast channel is considered. This model applies to a one-to-many transmission scenario in which some mechanism at the physical layer delivers information packets with losses represented by erasures, and users are subject to different erasure probabilities. The reconstruction signal-to-noise ratio (SNR) region achieved by concatenating a multiresolution source code with a broadcast channel code is characterized and four convex optimization problems corresponding to different performance criteria are solved. Each problem defines a particular operating point on the dominant face of the SNR region. Layered joint source-channel codes are constructed based on the concatenation of embedded scalar quantizers with binary raptor encoders. The proposed schemes are shown to operate very close to the theoretical optimum.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
The multicasting of an independent and identically distributed Gaussian source over a binary erasure broadcast channel is considered. This model applies to a one-to-many transmission scenario in which some mechanism at the physical layer delivers information packets with losses represented by erasures, and users are subject to different erasure probabilities. The reconstruction signal-to-noise ratio (SNR) region achieved by concatenating a multiresolution source code with a broadcast channel code is characterized and four convex optimization problems corresponding to different performance criteria are solved. Each problem defines a particular operating point on the dominant face of the SNR region. Layered joint source-channel codes are constructed based on the concatenation of embedded scalar quantizers with binary raptor encoders. The proposed schemes are shown to operate very close to the theoretical optimum.