Using Genetic Algorithms to Optimize the Instruction-Set Encoding on Processor Cores

M. Weißbrich, Javier Andrés Moreno-Medina, G. P. Vayá
{"title":"Using Genetic Algorithms to Optimize the Instruction-Set Encoding on Processor Cores","authors":"M. Weißbrich, Javier Andrés Moreno-Medina, G. P. Vayá","doi":"10.1109/MOCAST52088.2021.9493406","DOIUrl":null,"url":null,"abstract":"An optimized instruction-set encoding can reduce the silicon area and power consumption of a processor architecture implementation. However, the design space of the input encoding problem is of factorial growth with the number of instruction patterns, so effective heuristics and an automated exploration tool are required to facilitate instruction-set encoding optimization in a processor design flow. This paper proposes a novel approach based on genetic algorithms to automatically optimize the instruction-set encoding of a specific processor architecture, reducing the silicon area and power consumption requirements for specific applications and hardware implementation technologies. Furthermore, an open-source tool, called VANAGA, is presented, which implements the proposed approach and allows flexible adaptation to custom instruction-set optimization scenarios. The tool flow is evaluated with an exemplary 65 nm standard cell ASIC implementation of a minimal controller architecture with 4-bit wide opcodes (NanoController). For different optimization scenarios, logic silicon area and total power consumption vary within a design space range of 6.3% and 0.46% for different instruction-set encodings, respectively.","PeriodicalId":146990,"journal":{"name":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"19 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST52088.2021.9493406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An optimized instruction-set encoding can reduce the silicon area and power consumption of a processor architecture implementation. However, the design space of the input encoding problem is of factorial growth with the number of instruction patterns, so effective heuristics and an automated exploration tool are required to facilitate instruction-set encoding optimization in a processor design flow. This paper proposes a novel approach based on genetic algorithms to automatically optimize the instruction-set encoding of a specific processor architecture, reducing the silicon area and power consumption requirements for specific applications and hardware implementation technologies. Furthermore, an open-source tool, called VANAGA, is presented, which implements the proposed approach and allows flexible adaptation to custom instruction-set optimization scenarios. The tool flow is evaluated with an exemplary 65 nm standard cell ASIC implementation of a minimal controller architecture with 4-bit wide opcodes (NanoController). For different optimization scenarios, logic silicon area and total power consumption vary within a design space range of 6.3% and 0.46% for different instruction-set encodings, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用遗传算法优化处理器核心上的指令集编码
优化的指令集编码可以减少处理器架构实现的硅面积和功耗。然而,输入编码问题的设计空间随着指令模式的数量呈阶乘增长,因此需要有效的启发式和自动探索工具来促进处理器设计流程中的指令集编码优化。本文提出了一种基于遗传算法的新方法来自动优化特定处理器架构的指令集编码,从而减少特定应用和硬件实现技术的硅面积和功耗要求。此外,提出了一个名为VANAGA的开源工具,它实现了所提出的方法,并允许灵活地适应自定义指令集优化场景。工具流通过一个典型的65纳米标准单元ASIC实现,该ASIC实现了具有4位宽操作码的最小控制器架构(NanoController)。在不同优化方案下,不同指令集编码的逻辑硅面积和总功耗分别在6.3%和0.46%的设计空间范围内变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fish Morphological Feature Recognition Based on Deep Learning Techniques Design Steps towards a MCU-based Instrumentation System for Memristor-based Crossbar Arrays Advanced Teaching in Electromagnetics at the ELEDIA Research Center ATLAS toward the High Luminosity era: challenges on electronic systems Unsupervised Machine Learning in 6G Networks -State-of-the-art and Future Trends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1