Malayalam Handwritten Character Recognition Using Transfer Learning

Bineesh Jose, K. Pushpalatha
{"title":"Malayalam Handwritten Character Recognition Using Transfer Learning","authors":"Bineesh Jose, K. Pushpalatha","doi":"10.1109/AICAPS57044.2023.10074586","DOIUrl":null,"url":null,"abstract":"A novel Deep Convolutional Neural Network (DCNN) model is proposed for handwritten Malayalam character recognition using Transfer Learning in this work. Popular Transfer Learning models such as Inception-V4, AlexNet, DenseNet, and VGG are used as a feature extractors. The implementation of popular models like AlexNet, DenseNet-121, DenseNet-201, VGG-11, VGG-16, VGG-19 and Inception-v4 was done with 15 epochs. 99% accuracy was achieved by Inception-V4 with an average epoch time of 16.3 minutes. At the same time, 98% accuracy was achieved by AlexNet with an average training time of 2.2 minutes per epoch, which shows that Inception-V4 performs well. Inception framework that has demonstrated excellent performance at a low computational cost. In this paper, we used residual connections within a traditional Inception architecture, which resulted in state-of-the-art learning performance with the highest accuracy of 99.69% and an average epoch time of 15.1 minutes.","PeriodicalId":146698,"journal":{"name":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAPS57044.2023.10074586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel Deep Convolutional Neural Network (DCNN) model is proposed for handwritten Malayalam character recognition using Transfer Learning in this work. Popular Transfer Learning models such as Inception-V4, AlexNet, DenseNet, and VGG are used as a feature extractors. The implementation of popular models like AlexNet, DenseNet-121, DenseNet-201, VGG-11, VGG-16, VGG-19 and Inception-v4 was done with 15 epochs. 99% accuracy was achieved by Inception-V4 with an average epoch time of 16.3 minutes. At the same time, 98% accuracy was achieved by AlexNet with an average training time of 2.2 minutes per epoch, which shows that Inception-V4 performs well. Inception framework that has demonstrated excellent performance at a low computational cost. In this paper, we used residual connections within a traditional Inception architecture, which resulted in state-of-the-art learning performance with the highest accuracy of 99.69% and an average epoch time of 15.1 minutes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用迁移学习的马拉雅拉姆手写字符识别
本文提出了一种基于迁移学习的深度卷积神经网络(DCNN)手写马来拉姆文字识别模型。流行的迁移学习模型,如Inception-V4、AlexNet、DenseNet和VGG被用作特征提取器。AlexNet、DenseNet-121、DenseNet-201、VGG-11、VGG-16、VGG-19和Inception-v4等流行模型的实现需要15个epoch。Inception-V4的准确率达到99%,平均历元时间为16.3分钟。同时,AlexNet的准确率达到98%,每个epoch的平均训练时间为2.2分钟,这表明Inception-V4表现良好。在低计算成本下表现出优异性能的先启框架。在本文中,我们在传统的Inception架构中使用残余连接,这导致了最高准确率为99.69%的最先进的学习性能和15.1分钟的平均epoch时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Irrigation Management System for Precision Agriculture Impact of Stain Normalisation Technique on Deep Learning based Nuclei Segmentation in Histopathological Image An Optimal Differential Evolution Based XGB Classifier for IoMT malware classification Sarcasm Detection followed by Sentiment Analysis for Bengali Language: Neural Network & Supervised Approach Feature Selection using Enhanced Nature Optimization Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1