How to improve human-robot collaborative applications through operation recognition based on human 2D motion

Fiorella Sibona, Pangcheng David Cen Cheng, M. Indri
{"title":"How to improve human-robot collaborative applications through operation recognition based on human 2D motion","authors":"Fiorella Sibona, Pangcheng David Cen Cheng, M. Indri","doi":"10.1109/IECON49645.2022.9969120","DOIUrl":null,"url":null,"abstract":"Human-robot collaborative applications are generally based on some kind of co-working of the human operator and the robot in the execution of a given task. A disruptive change in the collaborative modalities would be given by the capability of the robot to anticipate how it could be of help for the operator. In case of an Autonomous Mobile Robot (AMR), this would imply not only a safe navigation in presence of a human operator, but the automatic adaptation of its motion to the specific operation carried out by the operator. This paper investigates the possibility of achieving operation recognition by monitoring the human motion on a 2D map and classifying his/her path on the map, taken as an image data sample. Deep learning state-of-the-art libraries and architectures are exploited with the aim of making the robotic system aware of the ongoing process. The reported results, relative to a small training dataset, are nonetheless promising.","PeriodicalId":125740,"journal":{"name":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON49645.2022.9969120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human-robot collaborative applications are generally based on some kind of co-working of the human operator and the robot in the execution of a given task. A disruptive change in the collaborative modalities would be given by the capability of the robot to anticipate how it could be of help for the operator. In case of an Autonomous Mobile Robot (AMR), this would imply not only a safe navigation in presence of a human operator, but the automatic adaptation of its motion to the specific operation carried out by the operator. This paper investigates the possibility of achieving operation recognition by monitoring the human motion on a 2D map and classifying his/her path on the map, taken as an image data sample. Deep learning state-of-the-art libraries and architectures are exploited with the aim of making the robotic system aware of the ongoing process. The reported results, relative to a small training dataset, are nonetheless promising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何通过基于人体二维运动的操作识别来提高人机协同应用
人-机器人协作应用通常基于人类操作者和机器人在执行给定任务时的某种合作。机器人能够预测如何为操作员提供帮助,这将给协作模式带来颠覆性的变化。在自主移动机器人(AMR)的情况下,这不仅意味着在人类操作员在场的情况下安全导航,而且意味着它的运动自动适应操作员进行的特定操作。本文研究了通过监测二维地图上的人体运动,并对其在地图上的路径进行分类,作为图像数据样本来实现操作识别的可能性。利用深度学习最先进的库和架构,目的是使机器人系统意识到正在进行的过程。尽管如此,相对于一个小的训练数据集,报告的结果还是很有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency Evaluation of the Xilinx DPU Towards Energy Efficiency Analysis of the Bipolar Voltage Bus Balancing of a DC Microgrid with Bidirectional Converters Design Method of Coreless Coil Considering Power, Efficiency and Magnetic Field Leakage in Wireless Power Transfer Distributed Finite-time Coverage Control of Multi-quadrotor Systems Day-Ahead PV Power Forecasting for Control Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1