TREM: A tool for mining timed regular specifications from system traces

Lukas Schmidt, Apurva Narayan, S. Fischmeister
{"title":"TREM: A tool for mining timed regular specifications from system traces","authors":"Lukas Schmidt, Apurva Narayan, S. Fischmeister","doi":"10.1109/ASE.2017.8115702","DOIUrl":null,"url":null,"abstract":"Software specifications are useful for software validation, model checking, runtime verification, debugging, monitoring, etc. In context of safety-critical real-time systems, temporal properties play an important role. However, temporal properties are rarely present due to the complexity and evolutionary nature of software systems. We propose Timed Regular Expression Mining (TREM) a hosted tool for specification mining using timed regular expressions (TREs). It is designed for easy and robust mining of dominant temporal properties. TREM uses an abstract structure of the property; the framework constructs a finite state machine to serve as an acceptor. TREM is scalable, easy to access/use, and platform independent specification mining framework. The tool is tested on industrial strength software system traces such as the QNX real-time operating system using traces with more than 1.5 Million entries. The tool demonstration video can be accessed here: youtu.be/cSd_aj3_LH8","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Software specifications are useful for software validation, model checking, runtime verification, debugging, monitoring, etc. In context of safety-critical real-time systems, temporal properties play an important role. However, temporal properties are rarely present due to the complexity and evolutionary nature of software systems. We propose Timed Regular Expression Mining (TREM) a hosted tool for specification mining using timed regular expressions (TREs). It is designed for easy and robust mining of dominant temporal properties. TREM uses an abstract structure of the property; the framework constructs a finite state machine to serve as an acceptor. TREM is scalable, easy to access/use, and platform independent specification mining framework. The tool is tested on industrial strength software system traces such as the QNX real-time operating system using traces with more than 1.5 Million entries. The tool demonstration video can be accessed here: youtu.be/cSd_aj3_LH8
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TREM:从系统跟踪中挖掘定时规则规范的工具
软件规范对软件验证、模型检查、运行时验证、调试、监控等都很有用。在对安全至关重要的实时系统中,时间特性起着重要作用。然而,由于软件系统的复杂性和进化性质,时间属性很少出现。我们提出了定时正则表达式挖掘(TREM),这是一个使用定时正则表达式(TREs)进行规范挖掘的托管工具。它的设计是为了方便和健壮地挖掘主要的时间属性。TREM使用属性的抽象结构;框架构造一个有限状态机作为接受者。TREM是一个可扩展的、易于访问/使用的、与平台无关的规范挖掘框架。该工具在QNX实时操作系统等工业强度的软件系统轨迹上进行了测试,使用的轨迹超过150万条。该工具演示视频可以在这里访问:youtube .be/cSd_aj3_LH8
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TiQi: A natural language interface for querying software project data A comprehensive study on real world concurrency bugs in Node.js Managing software evolution through semantic history slicing Software performance self-adaptation through efficient model predictive control Privacy-aware data-intensive applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1