KeyWord Spotting using Siamese Triplet Deep Neural Networks

Yasmine Serdouk, V. Eglin, S. Bres, Mylène Pardoen
{"title":"KeyWord Spotting using Siamese Triplet Deep Neural Networks","authors":"Yasmine Serdouk, V. Eglin, S. Bres, Mylène Pardoen","doi":"10.1109/ICDAR.2019.00187","DOIUrl":null,"url":null,"abstract":"Deep neural networks has shown great success in computer vision fields by achieving considerable state-of-the-art results and are beginning to arouse big interest in the document analysis community. In this paper, we present a novel siamese deep network of three inputs that allows retrieving the most similar words to a given query. The proposed system follows a query-by-example approach according to a segmentation-based technique and aims to learn suitable representations of handwritten word images, for which a simple Euclidean distance could perform the matching. The results obtained for the George Washington dataset show the potential and the effectiveness of the proposed keyword spotting system.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Deep neural networks has shown great success in computer vision fields by achieving considerable state-of-the-art results and are beginning to arouse big interest in the document analysis community. In this paper, we present a novel siamese deep network of three inputs that allows retrieving the most similar words to a given query. The proposed system follows a query-by-example approach according to a segmentation-based technique and aims to learn suitable representations of handwritten word images, for which a simple Euclidean distance could perform the matching. The results obtained for the George Washington dataset show the potential and the effectiveness of the proposed keyword spotting system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Siamese三重态深度神经网络的关键词识别
深度神经网络在计算机视觉领域取得了巨大的成功,取得了相当先进的成果,并开始引起文档分析社区的极大兴趣。在本文中,我们提出了一个新颖的三个输入的暹罗深度网络,它允许检索与给定查询最相似的单词。该系统采用基于分割技术的逐例查询方法,旨在学习手写单词图像的合适表示,简单的欧几里得距离可以完成匹配。乔治华盛顿数据集的结果显示了所提出的关键字定位系统的潜力和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Article Segmentation in Digitised Newspapers with a 2D Markov Model ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard TableNet: Deep Learning Model for End-to-end Table Detection and Tabular Data Extraction from Scanned Document Images DICE: Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis Blind Source Separation Based Framework for Multispectral Document Images Binarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1