Novel Hybrid Wired-Wireless Network-on-Chip Architectures: Transducer and Communication Fabric Design

Michael Opoku Agyeman, W. Zong, Ji-Xiang Wan, A. Yakovlev, K. Tong, T. Mak
{"title":"Novel Hybrid Wired-Wireless Network-on-Chip Architectures: Transducer and Communication Fabric Design","authors":"Michael Opoku Agyeman, W. Zong, Ji-Xiang Wan, A. Yakovlev, K. Tong, T. Mak","doi":"10.1145/2786572.2786586","DOIUrl":null,"url":null,"abstract":"Existing wireless communication interface of Hybrid Wired-Wireless Network-on-Chip (WiNoC) has 3-dimensional free space signal radiation which has high power dissipation and drastically affects the received signal strength. In this paper, we propose a CMOS based 2-dimensional (2-D) waveguide communication fabric that is able to match the channel reliability of traditional wired NoCs as the wireless communication fabric. Our experimental results demonstrate that, the proposed communication fabric can achieve a 5dB operational bandwidth of about 60GHz around the center frequency (60GHz). Compared to existing WiNoCs, the proposed communication fabric can improve the reliability of WiNoCs with average gains of 21.4%, 13.8% and 10.6% performance efficiencies in terms of maximum sustainable load, throughput and delay, respectively.","PeriodicalId":228605,"journal":{"name":"Proceedings of the 9th International Symposium on Networks-on-Chip","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Networks-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786572.2786586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Existing wireless communication interface of Hybrid Wired-Wireless Network-on-Chip (WiNoC) has 3-dimensional free space signal radiation which has high power dissipation and drastically affects the received signal strength. In this paper, we propose a CMOS based 2-dimensional (2-D) waveguide communication fabric that is able to match the channel reliability of traditional wired NoCs as the wireless communication fabric. Our experimental results demonstrate that, the proposed communication fabric can achieve a 5dB operational bandwidth of about 60GHz around the center frequency (60GHz). Compared to existing WiNoCs, the proposed communication fabric can improve the reliability of WiNoCs with average gains of 21.4%, 13.8% and 10.6% performance efficiencies in terms of maximum sustainable load, throughput and delay, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型混合有线-无线片上网络架构:传感器和通信结构设计
现有的混合有线-无线片上网络(WiNoC)无线通信接口具有三维自由空间信号辐射,其功耗高,严重影响接收信号强度。在本文中,我们提出了一种基于CMOS的二维(2-D)波导通信结构,能够匹配传统有线noc作为无线通信结构的信道可靠性。实验结果表明,该通信结构在中心频率(60GHz)附近可实现约60GHz的5dB运行带宽。与现有的winoc相比,所提出的通信结构可以提高winoc的可靠性,在最大可持续负载、吞吐量和延迟方面的平均性能效率分别提高21.4%、13.8%和10.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wear-Aware Adaptive Routing for Networks-on-Chips On-Chip Millimeter Wave Antennas and Transceivers On-Chip Decentralized Routers with Balanced Pipelines for Avoiding Interconnect Bottleneck Highly Fault-tolerant NoC Routing with Application-aware Congestion Management A Low-Overhead, Fully-Distributed, Guaranteed-Delivery Routing Algorithm for Faulty Network-on-Chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1