New fast motion estimation algorithm in video coding

A. V. Paramkusam, V. Reddy
{"title":"New fast motion estimation algorithm in video coding","authors":"A. V. Paramkusam, V. Reddy","doi":"10.1109/RAICS.2011.6069351","DOIUrl":null,"url":null,"abstract":"The new fast full search motion estimation algorithm for optimal motion estimation is proposed in this paper. The computational process of boundaries and possibility of early rejection of non best candidate blocks in Successive Elimination Algorithm (SEA), Multilevel Successive Elimination Algorithm (MSEA) and Fine Granularity Successive Elimination (FGSE) are theoretically and practically analyzed. Based on these analyzes, we present two methods. The first method is Fast Computing Method (FCM) which takes advantage of mathematical indications of redundancy to reduce the number of operations required to compute the boundaries. The second method is Best Initial Matching Error Predictive Method (BIMEPM) which predicts the best initial matching error. With these methods, the operation number for proposed motion estimation is reduced down to 1/52 of Full Search (FS). But MSEA and FGSE algorithms can reduce computations by 1/40 and 1/42 of FS.","PeriodicalId":394515,"journal":{"name":"2011 IEEE Recent Advances in Intelligent Computational Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Recent Advances in Intelligent Computational Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2011.6069351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The new fast full search motion estimation algorithm for optimal motion estimation is proposed in this paper. The computational process of boundaries and possibility of early rejection of non best candidate blocks in Successive Elimination Algorithm (SEA), Multilevel Successive Elimination Algorithm (MSEA) and Fine Granularity Successive Elimination (FGSE) are theoretically and practically analyzed. Based on these analyzes, we present two methods. The first method is Fast Computing Method (FCM) which takes advantage of mathematical indications of redundancy to reduce the number of operations required to compute the boundaries. The second method is Best Initial Matching Error Predictive Method (BIMEPM) which predicts the best initial matching error. With these methods, the operation number for proposed motion estimation is reduced down to 1/52 of Full Search (FS). But MSEA and FGSE algorithms can reduce computations by 1/40 and 1/42 of FS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频编码中新的快速运动估计算法
针对最优运动估计问题,提出了一种新的快速全搜索运动估计算法。对连续消除算法(SEA)、多级连续消除算法(MSEA)和细粒度连续消除算法(FGSE)中边界的计算过程和非最佳候选块的早期拒绝可能性进行了理论和实践分析。基于这些分析,我们提出了两种方法。第一种方法是快速计算方法(FCM),它利用冗余的数学指示来减少计算边界所需的操作次数。第二种方法是最佳初始匹配误差预测法(BIMEPM),用于预测最佳初始匹配误差。利用这些方法,将运动估计的运算次数减少到Full Search (FS)的1/52。而MSEA和FGSE算法的计算量分别是FS的1/40和1/42。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fast approximate kernel k-means clustering method for large data sets Hue-preserving color image enhancement using particle swarm optimization Novel stable sram for ultra low power deep submicron cache memories A level shifter for deep-submicron node using multi-threshold technique Efficient computation of codon bias spectra and their implications in genome sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1