{"title":"Millimeter-wave silicon transistor and benchmark circuit scaling through the 2030 ITRS horizon","authors":"S. Voinigescu, S. Shopov, P. Chevalier","doi":"10.1109/GSMM.2015.7175460","DOIUrl":null,"url":null,"abstract":"This paper reviews the technology requirements of future mm-wave systems-on-chip and the challenges facing mm-wave MOSFET and SiGe HBT device and benchmark circuit scaling towards 3nm gate length and beyond 1.5THz fMAX. Measurements of state-of-the-art MOSFETs, HBTs and cascodes are presented from DC to 325 GHz. Finally, simulations of the scaling of the SiGe HBT mm-wave benchmark circuit performance across future technology nodes predict that PAs with 45% PAE at 220 GHz, and transimpedance amplifiers with over 175GHz bandwidth and less than 3dB noise figure will become feasible by the year 2030.","PeriodicalId":405509,"journal":{"name":"Global Symposium on Millimeter-Waves (GSMM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Symposium on Millimeter-Waves (GSMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2015.7175460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper reviews the technology requirements of future mm-wave systems-on-chip and the challenges facing mm-wave MOSFET and SiGe HBT device and benchmark circuit scaling towards 3nm gate length and beyond 1.5THz fMAX. Measurements of state-of-the-art MOSFETs, HBTs and cascodes are presented from DC to 325 GHz. Finally, simulations of the scaling of the SiGe HBT mm-wave benchmark circuit performance across future technology nodes predict that PAs with 45% PAE at 220 GHz, and transimpedance amplifiers with over 175GHz bandwidth and less than 3dB noise figure will become feasible by the year 2030.