Statistical and computational techniques for extraction of underlying systematic risk factors: a comparative in the Mexican stock exchange

Rogelio, Salvador Torra Porras, Enric Monte Moreno
{"title":"Statistical and computational techniques for extraction of underlying systematic risk factors: a comparative in the Mexican stock exchange","authors":"Rogelio, Salvador Torra Porras, Enric Monte Moreno","doi":"10.14718/revfinanzpolitecon.3740","DOIUrl":null,"url":null,"abstract":"This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis and Neural Networks Principal Component Analysis, which are used as techniques for extracting the underlying systematic risk factors driving the returns on equities of the Mexican Stock Exchange, under a statistical approach to the Arbitrage Pricing Theory. We carry out our research according to two different perspectives. First, we evaluate them from a theoretical and matrix scope, making a parallelism among their particular mixing and demixing processes, as well as the attributes of the factors extracted by each method. Secondly, we accomplish an empirical study in order to measure the level of accuracy in the reconstruction of the original variables.","PeriodicalId":377256,"journal":{"name":"Revista Finanzas y Política Económica","volume":"106 1 Pt 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Finanzas y Política Económica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14718/revfinanzpolitecon.3740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis and Neural Networks Principal Component Analysis, which are used as techniques for extracting the underlying systematic risk factors driving the returns on equities of the Mexican Stock Exchange, under a statistical approach to the Arbitrage Pricing Theory. We carry out our research according to two different perspectives. First, we evaluate them from a theoretical and matrix scope, making a parallelism among their particular mixing and demixing processes, as well as the attributes of the factors extracted by each method. Secondly, we accomplish an empirical study in order to measure the level of accuracy in the reconstruction of the original variables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于提取潜在系统风险因素的统计和计算技术:墨西哥证券交易所的比较
本文比较了在套利定价理论的统计方法下,用于提取驱动墨西哥证券交易所股票收益的潜在系统性风险因素的降维或特征提取技术,如主成分分析、因子分析、独立成分分析和神经网络主成分分析。我们从两个不同的角度进行研究。首先,我们从理论和矩阵的范围对它们进行评估,使它们的特定混合和分离过程之间的并行性,以及每种方法提取的因素的属性。其次,我们完成了一个实证研究,以衡量在原始变量的重建精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Endeudamiento público municipal en México en el periodo 2009-2021: los efectos de las reformas legales y la pandemia por covid-19 Análisis de la eficiencia del mercado de acciones chileno Efecto de la liberación comercial sobre el mercado de trabajo y la pobreza en el sector de las confecciones en Colombia Brechas de género y gobernanzas criminales del narcotráfico en Latinoamérica Factores del sistema tributario argentino: ¿incentivo o desincentivo a la informalidad empresarial? Percepción de los comerciantes y contadores públicos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1