PriDyn: Framework for Performance Specific QoS in Cloud Storage

Nitisha Jain, J. Lakshmi
{"title":"PriDyn: Framework for Performance Specific QoS in Cloud Storage","authors":"Nitisha Jain, J. Lakshmi","doi":"10.1109/CLOUD.2014.15","DOIUrl":null,"url":null,"abstract":"Virtualization is one of the key enabling technologies for cloud computing. Although it facilitates improved utilization of resources, virtualization can lead to performance degradation due to the sharing of physical resources like CPU, memory, network interfaces, disk controllers, etc. Multi-tenancy can cause highly unpredictable performance for concurrent I/O applications running inside virtual machines that share local disk storage in cloud. Disk I/O requests in a typical cloud setup may have varied requirements in terms of latency and throughput as they arise from a range of heterogeneous applications having diverse performance goals. This necessitates providing differential performance services to different I/O applications. In this paper, we present PriDyn, a novel scheduling framework which is designed to consider I/O performance metrics of applications such as acceptable latency and convert them to an appropriate priority value for disk access based on the current system state. This framework aims to provide differentiated I/O service to various applications and ensures predictable performance for critical applications in multi-tenant cloud environment. We demonstrate that this framework achieves appreciable enhancements in I/O performance indicating that this approach is a promising step towards enabling QoS guarantees on cloud storage.","PeriodicalId":288542,"journal":{"name":"2014 IEEE 7th International Conference on Cloud Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2014.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Virtualization is one of the key enabling technologies for cloud computing. Although it facilitates improved utilization of resources, virtualization can lead to performance degradation due to the sharing of physical resources like CPU, memory, network interfaces, disk controllers, etc. Multi-tenancy can cause highly unpredictable performance for concurrent I/O applications running inside virtual machines that share local disk storage in cloud. Disk I/O requests in a typical cloud setup may have varied requirements in terms of latency and throughput as they arise from a range of heterogeneous applications having diverse performance goals. This necessitates providing differential performance services to different I/O applications. In this paper, we present PriDyn, a novel scheduling framework which is designed to consider I/O performance metrics of applications such as acceptable latency and convert them to an appropriate priority value for disk access based on the current system state. This framework aims to provide differentiated I/O service to various applications and ensures predictable performance for critical applications in multi-tenant cloud environment. We demonstrate that this framework achieves appreciable enhancements in I/O performance indicating that this approach is a promising step towards enabling QoS guarantees on cloud storage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PriDyn:云存储中特定性能QoS的框架
虚拟化是云计算的关键支持技术之一。尽管虚拟化有助于提高资源利用率,但由于共享物理资源(如CPU、内存、网络接口、磁盘控制器等),虚拟化可能导致性能下降。对于在云中共享本地磁盘存储的虚拟机中运行的并发I/O应用程序,多租户可能会导致高度不可预测的性能。典型云设置中的磁盘I/O请求在延迟和吞吐量方面可能有不同的需求,因为它们来自具有不同性能目标的一系列异构应用程序。这就需要为不同的I/O应用程序提供不同的性能服务。在本文中,我们提出了PriDyn,一个新的调度框架,旨在考虑应用程序的I/O性能指标,如可接受的延迟,并根据当前系统状态将它们转换为磁盘访问的适当优先级值。该框架旨在为各种应用程序提供差异化的I/O服务,并确保多租户云环境中关键应用程序的可预测性能。我们证明了这个框架在I/O性能上实现了明显的增强,表明这种方法是在云存储上实现QoS保证的有希望的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User-Friendly Visualization of Cloud Quality Energy and Performance-Aware Task Scheduling in a Mobile Cloud Computing Environment MediaPaaS: A Cloud-Based Media Processing Platform for Elastic Live Broadcasting AppCloak: Rapid Migration of Legacy Applications into Cloud Introducing SSDs to the Hadoop MapReduce Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1