Music artist style identification by semi-supervised learning from both lyrics and content

Tao Li, M. Ogihara
{"title":"Music artist style identification by semi-supervised learning from both lyrics and content","authors":"Tao Li, M. Ogihara","doi":"10.1145/1027527.1027612","DOIUrl":null,"url":null,"abstract":"Efficient and intelligent music information retrieval is a very important topic of the 21st century. With the ultimate goal of building personal music information retrieval systems, this paper studies the problem of identifying \"similar\" artists using both lyrics and acoustic data. The approach for using a small set of labeled samples for the seed labeling to build classifiers that improve themselves using unlabeled data is presented. This approach is tested on a data set consisting of 43 artists and 56 albums using artist similarity provided by All Music Guide. Experimental results show that using such an approach the accuracy of artist similarity classifiers can be significantly improved and that artist similarity can be efficiently identified.","PeriodicalId":292207,"journal":{"name":"MULTIMEDIA '04","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1027527.1027612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Efficient and intelligent music information retrieval is a very important topic of the 21st century. With the ultimate goal of building personal music information retrieval systems, this paper studies the problem of identifying "similar" artists using both lyrics and acoustic data. The approach for using a small set of labeled samples for the seed labeling to build classifiers that improve themselves using unlabeled data is presented. This approach is tested on a data set consisting of 43 artists and 56 albums using artist similarity provided by All Music Guide. Experimental results show that using such an approach the accuracy of artist similarity classifiers can be significantly improved and that artist similarity can be efficiently identified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过歌词和内容的半监督学习来识别音乐艺术家的风格
高效智能的音乐信息检索是21世纪的重要课题。本文以建立个人音乐信息检索系统为最终目标,研究了同时使用歌词和声学数据识别“相似”艺术家的问题。提出了一种使用少量标记样本进行种子标记以构建分类器的方法,该分类器可以使用未标记的数据进行自我改进。使用All Music Guide提供的艺术家相似性,在包含43位艺术家和56张专辑的数据集上测试了这种方法。实验结果表明,采用该方法可以显著提高艺术家相似度分类器的准确率,有效地识别出艺术家相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Context for semantic metadata Collusion attack on a multi-key secure video proxy scheme PLSA-based image auto-annotation: constraining the latent space The relative effectiveness of concept-based versus content-based video retrieval LEMUR: robotic musical instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1